期刊文献+
共找到2,408篇文章
< 1 2 121 >
每页显示 20 50 100
Effect of sample temperature on femtosecond laser ablation of copper
1
作者 党伟杰 陈雨桐 +1 位作者 陈安民 金明星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期377-385,共9页
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of... We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials. 展开更多
关键词 femtosecond laser two-temperature model sample temperature ablation depth
下载PDF
Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning
2
作者 Annayath Maqbool Abdul Khalad Noor Zaman Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1518-1528,共11页
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros... The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys. 展开更多
关键词 Corrosion rate Friction stir processing Virtual sample generation Particle swarm optimization Machine learning Graphical user interface
下载PDF
Research on aiming methods for small sample size shooting tests of two-dimensional trajectory correction fuse
3
作者 Chen Liang Qiang Shen +4 位作者 Zilong Deng Hongyun Li Wenyang Pu Lingyun Tian Ziyang Lin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期506-517,共12页
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ... The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future. 展开更多
关键词 Two-dimensional trajectory correction fuse Small sample size test Compatibility test KL divergence Fusion bayesian estimation
下载PDF
Rockburst proneness considering energy characteristics and sample shape effects
4
作者 Song Luo Fengqiang Gong +1 位作者 Kang Peng Zhixiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2441-2465,共25页
Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy charact... Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy characteristics and qualitative information during rock failure.Several representative rock types in cylindrical and cuboidal sample shapes were tested under uniaxial compression conditions and the failure progress was detected by a high-speed camera.The far-field ejection mass ratio(FEMR)was determined considering the qualitative failure information of the rock samples.The peak-strength energy impact index and the residual elastic energy index were used to quantitatively evaluate the rockburst proneness of both cylindrical and cuboidal samples.Further,the performance of these two indices was analyzed by comparing their estimates with the FEMR.The results show that the accuracy of the residual elastic energy index is significantly higher than that of the peak-strength energy impact index.The residual elastic energy index and the FEMR are in good agreement for both cylindrical and cuboidal rock materials.This is because these two indices can essentially reflect the common energy release mechanism characterized by the mass,ejection velocity,and ejection distance of rock fragments.It suggests that both the FEMR and the residual elastic energy index can be used to accurately measure the rockburst proneness of cylindrical and cuboidal samples based on uniaxial compression test. 展开更多
关键词 Rockburst proneness sample shape Strain energy Energy release Far-field ejection mass ratio(FEMR)
下载PDF
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics
5
作者 TIAN Jing ZHANG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期24-30,共7页
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s... In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results. 展开更多
关键词 adaptive radar beamforming training sample selection non-homogeneous detector electronic jamming jamming suppression
下载PDF
A Railway Fastener Inspection Method Based on Abnormal Sample Generation
6
作者 Shubin Zheng Yue Wang +3 位作者 Liming Li Xieqi Chen Lele Peng Zhanhao Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期565-592,共28页
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect... Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets. 展开更多
关键词 Railway fastener sample generation inspection model deep learning
下载PDF
Research on the Encapsulation Device for Lunar Samples
7
作者 Yonggang Du Chunyong Wang +3 位作者 Haoling Li Ying Zhou Ming Ji Xuesong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期104-117,共14页
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components... The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future. 展开更多
关键词 Lunar samples ENCAPSULATION Vacuum seal MECHANISM
下载PDF
Effectiveness of Histopathological Examination of Ultrasound-guided Puncture Biopsy Samples for Diagnosis of Extrapulmonary Tuberculosis
8
作者 GU Wen Fei SHI Xia +5 位作者 MA Xin YU Jun Lei XU Jin Chuan QIAN Cheng Cheng HU Zhi Dong ZHANG Hui 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期170-177,共8页
Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Hea... Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Health Clinical Center.A total of 115patients underwent ultrasound-guided puncture biopsy,followed by MGIT 960 culture(culture),smear,Gene Xpert MTB/RIF(Xpert),and histopathological examination.These assays were performed to evaluate their effectiveness in diagnosing EPTB in comparison to two different diagnostic criteria:liquid culture and composite reference standard(CRS).Results When CRS was used as the reference standard,the sensitivity and specificity of culture,smear,Xpert,and histopathological examination were(44.83%,89.29%),(51.72%,89.29%),(70.11%,96.43%),and(85.06%,82.14%),respectively.Based on liquid culture tests,the sensitivity and specificity of smear,Xpert,and pathological examination were(66.67%,72.60%),(83.33%,63.01%),and(92.86%,45.21%),respectively.Histopathological examination showed the highest sensitivity but lowest specificity.Further,we found that the combination of Xpert and histopathological examination showed a sensitivity of 90.80%and a specificity of 89.29%.Conclusion Ultrasound-guided puncture sampling is safe and effective for the diagnosis of EPTB.Compared with culture,smear,and Xpert,histopathological examination showed higher sensitivity but lower specificity.The combination of histopathology with Xpert showed the best performance characteristics. 展开更多
关键词 Extrapulmonary tuberculosis DIAGNOSIS BIOPSY Histopathological examination Puncture samples
下载PDF
Exploring device physics of perovskite solar cell via machine learning with limited samples
9
作者 Shanshan Zhao Jie Wang +8 位作者 Zhongli Guo Hongqiang Luo Lihua Lu Yuanyuan Tian Zhuoying Jiang Jing Zhang Mengyu Chen Lin Li Cheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期441-448,共8页
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou... Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications. 展开更多
关键词 Perovskite solar cell Machine learning Device physics Performance prediction Limited samples
下载PDF
Mechanical behavior of 2G NPR bolt anchored rock samples under static disturbance loading
10
作者 WANG Jiong JIANG Jian +4 位作者 WANG Siyu CHANG Yiwen LIU Peng HE Manchao CHENG Shuang 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2494-2516,共23页
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar... The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt. 展开更多
关键词 Anchored rock samples Static disturbance load Acoustic emission characteristics Digital speckle Negative Poisson's ratio
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
11
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 Fault detection vehicle battery system lithium batteries fault samples
下载PDF
Selective sampling with Gromov–Hausdorff metric:Efficient dense-shape correspondence via Confidence-based sample consensus
12
作者 Dvir GINZBURG Dan RAVIV 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期30-42,共13页
Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resu... Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs. 展开更多
关键词 Dense-shape correspondence Spatial information Neural networks Spectral maps Selective sampling
下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
13
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling Dynamic dampers sampled-data control Multi-objective control
下载PDF
Frequentist and Bayesian Sample Size Determination for Single-Arm Clinical Trials Based on a Binary Response Variable: A Shiny App to Implement Exact Methods
14
作者 Susanna Gentile Valeria Sambucini 《Open Journal of Statistics》 2024年第1期90-105,共16页
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ... Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach. 展开更多
关键词 Binomial Proportion Frequentist and Bayesian Power Functions Exact sample Size Determination Shiny App Two-Priors Approach
下载PDF
Calculation of Two-Tailed Exact Probability in the Wald-Wolfowitz One-Sample Runs Test
15
作者 José Moral De La Rubia 《Journal of Data Analysis and Information Processing》 2024年第1期89-114,共26页
The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wo... The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test. 展开更多
关键词 RANDOMNESS Nonparametric Test Exact Probability Small samples QUANTILES
下载PDF
INFLUENCE OF SAMPLE THICKNESS ON ISOTHERMAL CRYSTALLIZATION KINETICS OF POLYMERS IN A CONFINED VOLUME 被引量:5
16
作者 Hui Sun Zhi-ying Zhang +1 位作者 Shi-zhen Wu Bin Yu and Chang-fa Xiao School of Materials Science and Chemical Engineering,Tianjin Polytechnic University,Tianjin 300160,China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第6期657-663,共7页
Isothermal crystallization process of polymers in a confined volume was simulated in the case of instantaneous nucleation by use of the Monte Carlo method.The influence of sample thickness on some kinetic parameters o... Isothermal crystallization process of polymers in a confined volume was simulated in the case of instantaneous nucleation by use of the Monte Carlo method.The influence of sample thickness on some kinetic parameters of crystallization was quantitatively evaluated.It was found that there was a critical thickness value.Influence of thickness on the crystallization behavior was only found for samples of thickness near and less than the critical value.For thick samples the Avrami plot showed straight lines with a turning point at the late stage of crystallization due to the secondary crystallization.When the thickness was near or less than the critical value a primary turning point appeared in the Avrami plot at the very beginning of the crystallization process.A model was proposed to explain the mechanism of this phenomenon.According to this model the critical thickness value is related to the nucleation density or the average distance between adjacent nuclei,and the primary turning point is an indication of a transformation of crystal growth geometry from a three-dimensional mode to a two-dimensional one.Analysis of experimental results of PEO isothermally crystallized at 53.5℃ was consistent with the proposed model. 展开更多
关键词 Avrami equation Isothermal crystallization Confined volume sample thickness
下载PDF
Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR 被引量:3
17
作者 Yang Wang Shuai Sun +11 位作者 Jinping Luo Ying Xiong Tao Ming Juntao Liu Yuanyuan Ma Shi Yan Yue Yang Zhugen Yang Julien Reboud Huabing Yin Jonathan MCooper Xinxia Cai 《Microsystems & Nanoengineering》 EI CSCD 2020年第1期982-990,共9页
In this work,an electrochemical paper-based aptasensor was fabricated for label-free and ultrasensitive detection of epidermal growth factor receptor(EGFR)by employing anti-EGFR aptamers as the bio-recognition element... In this work,an electrochemical paper-based aptasensor was fabricated for label-free and ultrasensitive detection of epidermal growth factor receptor(EGFR)by employing anti-EGFR aptamers as the bio-recognition element.The device used the concept of paper-folding,or origami,to serve as a valve between sample introduction and detection,so reducing sampling volumes and improving operation convenience.Amino-functionalized graphene(NH 2-GO)/thionine(THI)/gold particle(AuNP)nanocomposites were used to modify the working electrode not only to generate the electrochemical signals,but also to provide an environment conducive to aptamer immobilization.Electrochemical characterization revealed that the formation of an insulating aptamer–antigen immunocomplex would hinder electron transfer from the sample medium to the working electrode,thus resulting in a lower signal.The experimental results showed that the proposed aptasensor exhibited a linear range from 0.05 to 200 ngmL^(−1)(R^(2)=0.989)and a detection limit of 5pgmL^(−1) for EGFR.The analytical reliability of the proposed paper-based aptasensor was further investigated by analyzing serum samples,showing good agreement with the gold-standard enzyme-linked immunosorbent assay. 展开更多
关键词 ELECTROCHEMICAL sample free
原文传递
Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells 被引量:1
18
作者 Xiao-Lin Ni Lei-Ming Fang +3 位作者 Xin Li Xi-Ping Chen Lei Duan-Wei He Zi-Li Kou 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期12-15,共4页
Neutron diffraction techniques of large-volume samples at high pressure using compact opposed-anvil cells are developed at a reactor neutron source, China's Mianyang research reactor. We achieve a high-pressure condi... Neutron diffraction techniques of large-volume samples at high pressure using compact opposed-anvil cells are developed at a reactor neutron source, China's Mianyang research reactor. We achieve a high-pressure condition of in situ neutron diffraction by means of a newly designed large-volume opposed-anvil cell. This pressure calibration is based on resistance measurements of bismuth and the neutron diffraction of iron. Pressure calibration experiments are performed at room temperature for a new cell using the tungsten carbide anvils with a tapered angle of 30°, Φ4.5 mm culet diameter and the metal-nonmetal composite gasket with a thickness of 2 mm. Transitions in Bi(Ⅰ–Ⅱ 2.55 GPa, Ⅱ–V 7.7 GPa) are observed at 100 and 300 kN, respectively, by resistance measurements.The pressure measurement results of neutron diffraction are consistent with resistance measurements of bismuth.As a result, pressures up to about 7.7 GPa can routinely and stably be achieved using this apparatus, with the sample volume of 9 mm^3. 展开更多
关键词 Neutron Diffraction of Large-volume samples at High Pressure Using Compact Opposed-Anvil Cells
下载PDF
Application of improved virtual sample and sparse representation in face recognition 被引量:1
19
作者 Yongjun Zhang Zewei Wang +4 位作者 Xuexue Zhang Zhongwei Cui Bob Zhang Jinrong Cui Lamin LJanneh 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1391-1402,共12页
Sparse representation plays an important role in the research of face recognition.As a deformable sample classification task,face recognition is often used to test the performance of classification algorithms.In face ... Sparse representation plays an important role in the research of face recognition.As a deformable sample classification task,face recognition is often used to test the performance of classification algorithms.In face recognition,differences in expression,angle,posture,and lighting conditions have become key factors that affect recognition accuracy.Essentially,there may be significant differences between different image samples of the same face,which makes image classification very difficult.Therefore,how to build a robust virtual image representation becomes a vital issue.To solve the above problems,this paper proposes a novel image classification algorithm.First,to better retain the global features and contour information of the original sample,the algorithm uses an improved non‐linear image representation method to highlight the low‐intensity and high‐intensity pixels of the original training sample,thus generating a virtual sample.Second,by the principle of sparse representation,the linear expression coefficients of the original sample and the virtual sample can be calculated,respectively.After obtaining these two types of coefficients,calculate the distances between the original sample and the test sample and the distance between the virtual sample and the test sample.These two distances are converted into distance scores.Finally,a simple and effective weight fusion scheme is adopted to fuse the classification scores of the original image and the virtual image.The fused score will determine the final classification result.The experimental results show that the proposed method outperforms other typical sparse representation classification methods. 展开更多
关键词 REPRESENTATION sample IMAGE
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
20
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) Convolutional neural network(CNN)
下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部