Although previous investigations of the trace elements in snow and ice from the Qinghai-Tibetan Plateau obtained interesting information about pollution from human activities on the plateau, most were based on traditi...Although previous investigations of the trace elements in snow and ice from the Qinghai-Tibetan Plateau obtained interesting information about pollution from human activities on the plateau, most were based on traditional acidification methods.To emphasize the influence of the different sample-preparation methods on the records of trace elements and rare earth elements, snow samples were collected from glaciers on the Qinghai-Tibetan Plateau in China and prepared using two methods: traditional acidification and total digestion. Concentrations of 18 trace elements(Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li,Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), along with 14 rare earth elements(REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,Tm, Yb, and Lu), Y, and Th in the snow samples, were measured using inductively coupled plasma-sector field mass spectrometry(ICP-SFMS). The results showed that the mass fraction of the trace elements(defined as ratio of concentration in the acid-leachable fraction to that in the digested sample) such as Mo, Ti, Al, Rb, and V, varied from 0.06 to 0.5. The mass fraction of other trace elements varied from about 0.6 to more than 0.9; those of the REEs, Y, and Th varied from 0.34 to0.75. Lower mass fractions will lead to an overestimated contribution of other sources, especially human activities, and the underestimated fluxes of these trace elements(especially REEs, Y, and Th, as well as dust) if the REEs are used as the proxy for the crust dust. The two sample-preparation methods exhibited different REE normalized distribution patterns,REE ratios, and provenance-tracing results. The REE normalized distribution patterns and proxies in the digested samples are more reliable and integrated than those found in traditional acidification method for dust-provenance tracing.展开更多
基金supported by grants provided by the National Natural Science Foundation of China(Grant Nos.41276194,40771046,and 40601021)
文摘Although previous investigations of the trace elements in snow and ice from the Qinghai-Tibetan Plateau obtained interesting information about pollution from human activities on the plateau, most were based on traditional acidification methods.To emphasize the influence of the different sample-preparation methods on the records of trace elements and rare earth elements, snow samples were collected from glaciers on the Qinghai-Tibetan Plateau in China and prepared using two methods: traditional acidification and total digestion. Concentrations of 18 trace elements(Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li,Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), along with 14 rare earth elements(REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,Tm, Yb, and Lu), Y, and Th in the snow samples, were measured using inductively coupled plasma-sector field mass spectrometry(ICP-SFMS). The results showed that the mass fraction of the trace elements(defined as ratio of concentration in the acid-leachable fraction to that in the digested sample) such as Mo, Ti, Al, Rb, and V, varied from 0.06 to 0.5. The mass fraction of other trace elements varied from about 0.6 to more than 0.9; those of the REEs, Y, and Th varied from 0.34 to0.75. Lower mass fractions will lead to an overestimated contribution of other sources, especially human activities, and the underestimated fluxes of these trace elements(especially REEs, Y, and Th, as well as dust) if the REEs are used as the proxy for the crust dust. The two sample-preparation methods exhibited different REE normalized distribution patterns,REE ratios, and provenance-tracing results. The REE normalized distribution patterns and proxies in the digested samples are more reliable and integrated than those found in traditional acidification method for dust-provenance tracing.