期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Population Genetics of SARS-CoV-2: Disentangling Effects of Sampling Bias and Infection Clusters 被引量:6
1
作者 Qi Liu Shilei Zhao +8 位作者 Cheng-Min Shi Shuhui Song Sihui Zhu Yankai Su Wenming Zhao Mingkun Li Yiming Bao Yongbiao Xue Hua Chen 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2020年第6期640-647,共8页
A novel RNA virus,the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),is responsible for the ongoing outbreak of coronavirus disease 2019(COVID-19).Population genetic analysis could be useful for investiga... A novel RNA virus,the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),is responsible for the ongoing outbreak of coronavirus disease 2019(COVID-19).Population genetic analysis could be useful for investigating the origin and evolutionary dynamics of COVID-19.However,due to extensive sampling bias and existence of infection clusters during the epidemic spread,direct applications of existing approaches can lead to biased parameter estimations and data misinterpretation.In this study,we first present robust estimator for the time to the most recent common ancestor(TMRCA)and the mutation rate,and then apply the approach to analyze 12,909 genomic sequences of SARS-CoV-2.The mutation rate is inferred to be 8.69×10^(−4) per site per year with a 95%confidence interval(CI)of[8.61×10^(−4),8.77×10^(−4)],and the TMRCA of the samples inferred to be Nov 28,2019 with a 95%CI of[Oct 20,2019,Dec 9,2019].The results indicate that COVID-19 might originate earlier than and outside of Wuhan Seafood Market.We further demonstrate that genetic polymorphism patterns,including the enrichment of specific haplotypes and the temporal allele frequency trajectories generated from infection clusters,are similar to those caused by evolutionary forces such as natural selection.Our results show that population genetic methods need to be developed to efficiently detangle the effects of sampling bias and infection clusters to gain insights into the evolutionary mechanism of SARS-CoV-2.Software for implementing VirusMuT can be downloaded at https://bigd.big.ac.cn/biocode/tools/BT007081. 展开更多
关键词 COVID-19 SARS-CoV-2 Phylogenetic divergence Infection cluster sampling bias
原文传递
Addressing nonresponse bias in forest inventory change estimation using response homogeneity classifications
2
作者 James A.Westfall Mark D.Nelson 《Forest Ecosystems》 SCIE CSCD 2023年第1期125-131,共7页
Estimating amounts of change in forest resources over time is a key function of most national forest inventories(NFI). As this information is used broadly for many management and policy purposes, it is imperative that... Estimating amounts of change in forest resources over time is a key function of most national forest inventories(NFI). As this information is used broadly for many management and policy purposes, it is imperative that accurate estimations are made from the survey sample. Robust sampling designs are often used to help ensure representation of the population, but often the full sample is unrealized due to hazardous conditions or possibly lack of land access permission. Potentially, bias may be imparted to the sample if the nonresponse is nonrandom with respect to forest characteristics, which becomes more difficult to assess for change estimation methods that require measurements of the same sample plots at two points in time, i.e., remeasurement. To examine potential nonresponse bias in change estimates, two synthetic populations were constructed: 1) a typical NFI population consisting of both forest and nonforest plots, and 2) a population that mimics a large catastrophic disturbance event within a forested population. Comparisons of estimates under various nonresponse scenarios were made using a standard implementation of post-stratified estimation as well as an alternative approach that groups plots having similar response probabilities(response homogeneity). When using the post-stratified estimators, the amount of change was overestimated for the NFI population and was underestimated for the disturbance population, whereas the response homogeneity approach produced nearly unbiased estimates under the assumption of equal response probability within groups. These outcomes suggest that formal strategies may be needed to obtain accurate change estimates in the presence of nonrandom nonresponse. 展开更多
关键词 Disturbance POST-STRATIFICATION Land use conversion Sample bias
下载PDF
Do cooperatives participation and technology adoption improve farmers’welfare in China?A joint analysis accounting for selection bias 被引量:2
3
作者 YANG Dan ZHANG Hui-wei +1 位作者 LIU Zi-min ZENG Qiao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1716-1726,共11页
This study examines the impact of farmers’cooperatives participation and technology adoption on their economic welfare in China.A double selectivity model(DSM)is applied to correct for sample selection bias stemming ... This study examines the impact of farmers’cooperatives participation and technology adoption on their economic welfare in China.A double selectivity model(DSM)is applied to correct for sample selection bias stemming from both observed and unobserved factors,and a propensity score matching(PSM)method is applied to calculate the agricultural income difference with counter factual analysis using survey data from 396 farmers in 15 provinces in China.The findings indicate that farmers who join farmer cooperatives and adopt agricultural technology can increase agricultural income by 2.77 and 2.35%,respectively,compared with those non-participants and non-adopters.Interestingly,the effect on agricultural income is found to be more significant for the low-income farmers than the high-income ones,with income increasing 5.45 and 4.51%when participating in farmer cooperatives and adopting agricultural technology,respectively.Our findings highlight the positive role of farmer cooperatives and agricultural technology in promoting farmers’economic welfare.Based on the findings,government policy implications are also discussed. 展开更多
关键词 cooperatives double selectivity model propensity score matching sample selection bias technology adoption welfare improvement
下载PDF
Data reliability of the emerging citizen science in the Greater Bay Area of China
4
作者 Xilin Huang Yihong Wang +1 位作者 Yang Liu Lyu Bing Zhang 《Avian Research》 SCIE CSCD 2023年第3期354-360,共7页
The potential of citizen science projects in research has been increasingly acknowledged,but the substantial engagement of these projects is restricted by the quality of citizen science data.Based on the largest emerg... The potential of citizen science projects in research has been increasingly acknowledged,but the substantial engagement of these projects is restricted by the quality of citizen science data.Based on the largest emerging citizen science project in the country-Birdreport Online Database(BOD),we examined the biases of birdwatching data from the Greater Bay Area of China.The results show that the sampling effort is disparate among land cover types due to contributors’ preference towards urban and suburban areas,indicating the environment suitable for species existence could be underrepresented in the BOD data.We tested the contributors’ skill of species identification via a questionnaire targeting the citizen birders in the Greater Bay Area.The questionnaire show that most citizen birdwatchers could correctly identify the common species widely distributed in Southern China and the less common species with conspicuous morphological characteristics,while failed to identify the species from Alaudidae;Caprimulgidae,Emberizidae,Phylloscopidae,Scolopacidae and Scotocercidae.With a study example,we demonstrate that spatially clustered bird watching visits can cause underestimation of species richness in insufficiently sampled areas;and the result of species richness mapping is sensitive to the contributors’ skill of identifying bird species.Our results address how avian research can be influenced by the reliability of citizen science data in a region of generally high accessibility,and highlight the necessity of pre-analysis scrutiny on data reliability regarding to research aims at all spatial and temporal scales.To improve the data quality,we suggest to equip the data collection frame of BOD with a flexible filter for bird abundance,and questionnaires that collect information related to contributors’ bird identification skill.Statistic modelling approaches are encouraged to apply for correcting the bias of sampling effort. 展开更多
关键词 Bird identification skill Citizen science Data quality sampling bias Species richness The Greater Bay Area of China
下载PDF
A Path Planning Algorithm Based on Improved RRT Sampling Region
5
作者 Xiangkui Jiang Zihao Wang Chao Dong 《Computers, Materials & Continua》 SCIE EI 2024年第9期4303-4323,共21页
For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT ... For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT to shorten the search time,the search area of the randomtree is restricted to improve the sampling efficiency.Secondly,to obtain better information about obstacles to shorten the path length,a feedback-biased sampling strategy is used instead of the traditional random sampling,the collision of the expanding node with an obstacle generates feedback information so that the next expanding node avoids expanding within a specific angle range.Thirdly,this paper proposes using the inverse optimization strategy to remove redundancy points from the initial path,making the path shorter and more accurate.Finally,to satisfy the smooth operation of the robot in practice,auxiliary points are used to optimize the cubic Bezier curve to avoid path-crossing obstacles when using the Bezier curve optimization.The experimental results demonstrate that,compared to the traditional RRT algorithm,the proposed FS-RRT algorithm performs favorably against mainstream algorithms regarding running time,number of search iterations,and path length.Moreover,the improved algorithm also performs well in a narrow obstacle environment,and its effectiveness is further confirmed by experimental verification. 展开更多
关键词 RRT inversive optimization path planning feedback bias sampling mobile robots
下载PDF
Improving reservoir volumetric estimations in petroleum resource assessment using discovery process models 被引量:1
6
作者 Osadetz Kirk G. 《Petroleum Science》 SCIE CAS CSCD 2009年第2期105-118,共14页
The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and qu... The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and quality of the resource estimation. These techniques include: 1) the use of the Multivariate Discovery Process model (MDP) to derive unbiased distribution parameters of reservoir volumetric variables and to reveal correlations among the variables; 2) the use of the Geo-anchored method to estimate simultaneously the number of oil and gas pools in the same play; and 3) the crossvalidation of assessment results from different methods. These techniques are illustrated by using an example of crude oil and natural gas resource assessment of the Sverdrup Basin, Canadian Archipelago. The example shows that when direct volumetric measurements of the untested prospects are not available, the MDP model can help derive unbiased estimates of the distribution parameters by using information from the discovered oil and gas accumulations. It also shows that an estimation of the number of oil and gas accumulations and associated size ranges from a discovery process model can provide an alternative and efficient approach when inadequate geological data hinder the estimation. Cross-examination of assessment results derived using different methods allows one to focus on and analyze the causes for the major differences, thus providing a more reliable assessment outcome. 展开更多
关键词 Multivariate Discovery Process model sampling bias correction cross-validation Geoanchored method
下载PDF
Dynamic path planning strategy based on improved RRT^(*)algorithm 被引量:2
7
作者 SUO Chao HE Lile 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期198-208,共11页
In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is intr... In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average. 展开更多
关键词 mobile robot path planning rapidly-exploring random tree^(*)(RRT^(*))algorithm dynamic environment target bias sampling
下载PDF
Dimension Reduction Based on Sampling
8
作者 Zhuping Li Donghua Yang +3 位作者 Mengmeng Li Haifeng Guo Tiansheng Ye Hongzhi Wang 《国际计算机前沿大会会议论文集》 EI 2023年第1期207-220,共14页
Dimension reduction provides a powerful means of reducing the number of random variables under consideration.However,there were many similar tuples in large datasets,and before reducing the dimension of the dataset,we... Dimension reduction provides a powerful means of reducing the number of random variables under consideration.However,there were many similar tuples in large datasets,and before reducing the dimension of the dataset,we removed some similar tuples to retain the main information of the dataset while accelerating the dimension reduc-tion.Accordingly,we propose a dimension reduction technique based on biased sampling,a new procedure that incorporates features of both dimensional reduction and biased sampling to obtain a computationally efficient means of reducing the number of random variables under consid-eration.In this paper,we choose Principal Components Analysis(PCA)as the main dimensional reduction algorithm to study,and we show how this approach works. 展开更多
关键词 PCA dimensional reduction biased sampling
原文传递
Regression Analysis for the Additive Hazards Model with General Biased Survival Data
9
作者 Xiao-lin CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第3期545-556,共12页
In survival analysis,data are frequently collected by some complex sampling schemes,e.g.,length biased sampling,case-cohort sampling and so on.In this paper,we consider the additive hazards model for the general biase... In survival analysis,data are frequently collected by some complex sampling schemes,e.g.,length biased sampling,case-cohort sampling and so on.In this paper,we consider the additive hazards model for the general biased survival data.A simple and unified estimating equation method is developed to estimate the regression parameters and baseline hazard function.The asymptotic properties of the resulting estimators are also derived.Furthermore,to check the adequacy of the fitted model with general biased survival data,we present a test statistic based on the cumulative sum of the martingale-type residuals.Simulation studies are conducted to evaluate the performance of proposed methods,and applications to the shrub and Welsh Nickel Refiners datasets are given to illustrate the methodology. 展开更多
关键词 additive hazards model estimating equation general biased sampling model checking survival data
原文传递
Biodiversity effects and transgressive overyielding 被引量:6
10
作者 Bernhard Schmid Andy Hector +1 位作者 Prasenjit Saha Michel Loreau 《Journal of Plant Ecology》 SCIE 2008年第2期95-102,共8页
Aims The potential for mixtures of plant species to produce more biomass than every one of their constituent species in monoculture is still controversially discussed in the literature.Here we tested how this socalled... Aims The potential for mixtures of plant species to produce more biomass than every one of their constituent species in monoculture is still controversially discussed in the literature.Here we tested how this socalled transgressive overyielding is affected by variation between and within species in monoculture yields in biodiversity experiments.Methods We use basic statistical principles to calculate expected maximum monoculture yield in a species pool used for a biodiversity experiment.Using a real example we show how between-and withinspecies variance components in monoculture yields can be obtained.Combining the two components we estimate the importance of sampling bias in transgressive overyielding analysis.Important Findings The net biodiversity effect(difference between mixture and average monoculture yield)needed to achieve transgressive overyielding increases with the number of species in a mixture and with the variation between constituent species in monoculture yields.If there is no significant variation between species,transgressive overyielding should not be calculated using the best monoculture,because in this case the difference between this species and the other species could exclusively reflect a sampling bias.The sampling bias decreases with increasing variation between species.Tests for transgressive overyielding require replicated species’monocultures.However,it can be doubted whether such an emphasis on monocultures in biodiversity experiments is justified if an analysis of transgressive overyielding is not the major goal. 展开更多
关键词 biodiversity experiments mixtures MONOCULTURES overyielding analysis sampling bias
原文传递
Analysis of Two-sample Censored Data Using a Semiparametric Mixture Model
11
作者 Gang Li Chien-tai Lin 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第3期389-398,共10页
In this article we study a semiparametric mixture model for the two-sample problem with right censored data. The model implies that the densities for the continuous outcomes are related by a parametric tilt but otherw... In this article we study a semiparametric mixture model for the two-sample problem with right censored data. The model implies that the densities for the continuous outcomes are related by a parametric tilt but otherwise unspecified. It provides a useful alternative to the Cox (1972) proportional hazards model for the comparison of treatments based on right censored survival data. We propose an iterative algorithm for the semiparametric maximum likelihood estimates of the parametric and nonparametric components of the model. The performance of the proposed method is studied using simulation. We illustrate our method in an application to melanoma. 展开更多
关键词 biased sampling EM algorithm maximum likelihood estimation mixture model semiparametric model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部