Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.