The condensate and bunker oil leaked from the Sanchi collision would cause a persistent impact on marine ecosystems in the surrounding areas. The long-term prediction for the distribution of the oil-polluted water and...The condensate and bunker oil leaked from the Sanchi collision would cause a persistent impact on marine ecosystems in the surrounding areas. The long-term prediction for the distribution of the oil-polluted water and the information for the most affected regions would provide valuable information for the oceanic environment protection and pollution assessment. Based on the operational forecast system developed by the First Institute of Oceanography, State Oceanic Administration, we precisely predicted the drifting path of the oil tanker Sanchi after its collision. Trajectories of virtual oil particles show that the oil leaked from the Sanchi after it sank is mainly transported to the northeastern part of the sink location, and quickly goes to the open ocean along with the Kuroshio. Risk probability analysis based on the outcomes from the operational forecast system for years 2009 to2017 shows that the most affected area is at the northeast of the sink location.展开更多
The Sanchi oil tanker collision in the East China Sea on January 6th, 2018 has caused worldwide attention due to its uniqueness. A considerable amount of highly volatile natural-gas condensate oil was spilled, burned ...The Sanchi oil tanker collision in the East China Sea on January 6th, 2018 has caused worldwide attention due to its uniqueness. A considerable amount of highly volatile natural-gas condensate oil was spilled, burned and sank with the Sanchi tanker, this entirely new kind of maritime disaster has posed massive unknowns to the public. In this study, for better understanding of the evaporative behavior of condensate oils, two condensate oils were investigated under various laboratory conditions. The overall result demonstrates that the evaporation of condensate oils is highly dependent on the air-exposed time and the total loss of condensate oils could be more than 90% within a short time. However, a certain amount of the high-molecular weight and toxic oil contents such as phenanthrenes still highly remain in the aquatic system even after a long evaporation process, indicating their detrimental potentials to the aquatic organisms. Based on these data, for the Sanchi oil spill accident, it is assumed that although the evaporation weathering of the total condensate oil mass is probably tremendous, the long-term ecological risks of the remaining oil components in the marine environment are strongly recommended to be carefully evaluated.展开更多
The aim of this study is to elucidate the molecular and cellular mechanisms underlying the immunosuppressive effect of Sanchi extract (SE) via investigating the effects of SE on the activation and proliferation of m...The aim of this study is to elucidate the molecular and cellular mechanisms underlying the immunosuppressive effect of Sanchi extract (SE) via investigating the effects of SE on the activation and proliferation of murine lymphocytes and NO secretion by peritoneal macrophages in vitro. ConA was used to activate lymphecytes, and expression of CD69 on T cells and CFSE labeled cell division were detected by flow cytometry. Murine peritoneal macrophages were stimulated with LPS or lymphocytes culture supernate (LCS) and the concentration of NO was determined by Griess reagent assay. After 6 h of culture, SE ranging from 50 to 100μg/ml downregulated CD69 expression on ConA-activated T cells, while SE ranging from 12.5 to 100μg/ml inhibited the proliferative response of lymphocytes to ConA. Additionally, SE (12.5-100μg/ml) inhibited secretion of NO by peritoneal macrophages stimulated by LPS or LCS. This study reveals that SE inhibits the activation and proliferation of routine lymphocytes and NO secretion by peritoneal macrophages.展开更多
Objective: To explore the therapeutic mechanism of the combined use of Radix Salviae Miltiorrhizae, ligustrazine and Radix Sanchi in treating late hemorrhagic shock in rabbit. Methods: Rabbit hemorrhagic shock models ...Objective: To explore the therapeutic mechanism of the combined use of Radix Salviae Miltiorrhizae, ligustrazine and Radix Sanchi in treating late hemorrhagic shock in rabbit. Methods: Rabbit hemorrhagic shock models were set up according to Wiggers' method and treated with the combined therapy. Levels of RBC superoxide dismutase (SOD) activity, plasma malondialdehyde (MDA), blood lactate (BL) and magnesium (Mg++ ) were continuously monitored before shock, 120 minutes after shock, 60 and 120 minutes after reinfusion. Results: (1) Levels of SOD decreased and MDA, AL, Mg++ increased markedly 120 minutes after shock, indicating that there existed cell membrane damage caused by oxygen free radicals in hemorrhagic shock.(2) The combination therapy could alleviate lipid peroxidation injury to tissue, enhance the activity of SOD and lower the concentration of MDA significantly, P < 0. 01 or 0. 05, as compared with the control group. Conclusion: The combined use of the three drugs could gain the same effect with half dosage as that gained from the whole dosage of one single drug. It could also reduce the negative effect of treatment, such as hypotension and slowing down of heart rate展开更多
基金The National Natural Science Foundation of China under contract No.41506044the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405+2 种基金the National Program on Global Change and Air-Sea Interaction under contract No.GASI-IPOVAI-05the International Cooperation Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology,China under contract No.2016YFE0101400the Qingdao National Laboratory for Marine Science and Technology through the Transparency Program of Pacific Ocean-South China Sea-Indian Ocean under contract No.2015ASKJ01
文摘The condensate and bunker oil leaked from the Sanchi collision would cause a persistent impact on marine ecosystems in the surrounding areas. The long-term prediction for the distribution of the oil-polluted water and the information for the most affected regions would provide valuable information for the oceanic environment protection and pollution assessment. Based on the operational forecast system developed by the First Institute of Oceanography, State Oceanic Administration, we precisely predicted the drifting path of the oil tanker Sanchi after its collision. Trajectories of virtual oil particles show that the oil leaked from the Sanchi after it sank is mainly transported to the northeastern part of the sink location, and quickly goes to the open ocean along with the Kuroshio. Risk probability analysis based on the outcomes from the operational forecast system for years 2009 to2017 shows that the most affected area is at the northeast of the sink location.
基金partly supported by the National Natural Science Foundation of China (No.41807341)the Young Orient Scholars Program of Shanghai (No.QD2017038)+1 种基金the Doctoral Scientific Research Starting Foundation of Shanghai Ocean UniversityShanghai Special Research Fund for Training College's Young Teachers (No.ZZSHOU18025)。
文摘The Sanchi oil tanker collision in the East China Sea on January 6th, 2018 has caused worldwide attention due to its uniqueness. A considerable amount of highly volatile natural-gas condensate oil was spilled, burned and sank with the Sanchi tanker, this entirely new kind of maritime disaster has posed massive unknowns to the public. In this study, for better understanding of the evaporative behavior of condensate oils, two condensate oils were investigated under various laboratory conditions. The overall result demonstrates that the evaporation of condensate oils is highly dependent on the air-exposed time and the total loss of condensate oils could be more than 90% within a short time. However, a certain amount of the high-molecular weight and toxic oil contents such as phenanthrenes still highly remain in the aquatic system even after a long evaporation process, indicating their detrimental potentials to the aquatic organisms. Based on these data, for the Sanchi oil spill accident, it is assumed that although the evaporation weathering of the total condensate oil mass is probably tremendous, the long-term ecological risks of the remaining oil components in the marine environment are strongly recommended to be carefully evaluated.
基金This work was supported by the National Natural Science Foundation of China(30230350 and 30500466).
文摘The aim of this study is to elucidate the molecular and cellular mechanisms underlying the immunosuppressive effect of Sanchi extract (SE) via investigating the effects of SE on the activation and proliferation of murine lymphocytes and NO secretion by peritoneal macrophages in vitro. ConA was used to activate lymphecytes, and expression of CD69 on T cells and CFSE labeled cell division were detected by flow cytometry. Murine peritoneal macrophages were stimulated with LPS or lymphocytes culture supernate (LCS) and the concentration of NO was determined by Griess reagent assay. After 6 h of culture, SE ranging from 50 to 100μg/ml downregulated CD69 expression on ConA-activated T cells, while SE ranging from 12.5 to 100μg/ml inhibited the proliferative response of lymphocytes to ConA. Additionally, SE (12.5-100μg/ml) inhibited secretion of NO by peritoneal macrophages stimulated by LPS or LCS. This study reveals that SE inhibits the activation and proliferation of routine lymphocytes and NO secretion by peritoneal macrophages.
文摘Objective: To explore the therapeutic mechanism of the combined use of Radix Salviae Miltiorrhizae, ligustrazine and Radix Sanchi in treating late hemorrhagic shock in rabbit. Methods: Rabbit hemorrhagic shock models were set up according to Wiggers' method and treated with the combined therapy. Levels of RBC superoxide dismutase (SOD) activity, plasma malondialdehyde (MDA), blood lactate (BL) and magnesium (Mg++ ) were continuously monitored before shock, 120 minutes after shock, 60 and 120 minutes after reinfusion. Results: (1) Levels of SOD decreased and MDA, AL, Mg++ increased markedly 120 minutes after shock, indicating that there existed cell membrane damage caused by oxygen free radicals in hemorrhagic shock.(2) The combination therapy could alleviate lipid peroxidation injury to tissue, enhance the activity of SOD and lower the concentration of MDA significantly, P < 0. 01 or 0. 05, as compared with the control group. Conclusion: The combined use of the three drugs could gain the same effect with half dosage as that gained from the whole dosage of one single drug. It could also reduce the negative effect of treatment, such as hypotension and slowing down of heart rate