In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential ro...In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.展开更多
Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of...Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion. In this study, based on laboratory rainfall simulation experiments, we analyzed rainfall-induced erosion processes on sand-covered loess slopes (SS) with different sand cover patterns (including length and thickness) and uncovered loess slopes (LS) to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion. The grain-size curves of eroded sediments were fitted using the Weibull function. Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS. The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed. The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS. Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes. The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage. Sand cover on loess slopes aggravates loess erosion, not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess, compared with the loess slopes without sand cover. The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount. Furthermore, given the same sand cover pattern, a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion. This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.展开更多
Sand cay is a special kind of islet formed by coral detritus and bioclast, which is common in Nansha Islands of China. Some sand cays play an important role in ocean strategy and economy, but surprisingly we know litt...Sand cay is a special kind of islet formed by coral detritus and bioclast, which is common in Nansha Islands of China. Some sand cays play an important role in ocean strategy and economy, but surprisingly we know little about them, especially those recently formed sand cays. In this research, we monitor migration of a new sand cay in Nanxun Jiao(Gaven Reef) using a series of Quick Bird and World View-2 satellite images between June 2006 and August 2013. We conduct a regression between migration distance and wind observational data to examine the migration patterns of the new sand cay. The migration distance is calculated based on the sand cay locations extracted based on Normalized Difference Water Index(NDWI). The wind observational data downloaded from NOAA are reformed into four wind direction vectors. Based on the results of regression, we concluded that the migration of the new sand cay on Nanxun Jiao was significantly associated with the east, west and north wind.East wind was the main influence factor of the migration; its impact strength was almost twice as the west and north wind. The south wind has little effect on the migration of the sand cay, which is partly blocked by the artificial structure in the south.展开更多
The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing image...The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing images, this study utilizes geomorphology and landscape ecology to monitor and analyze the aeolian geomorphology characteristics of the Horqin Sandy Land. Results show that the sand dunes of the Horqin Sandy Land are mainly distributed on alluvial plains along the banks of the mainstream and tributaries of the Western Liao River, and the sand dune types tend to simplify from west to east and from south to north. The aeolian geomorphology coverage tend to be decreasing in the past 40 years, with an average annual change rate of 0.31%. While the area of traveling dunes decreased, the area of fixed and semi-fixed dunes increased. The fractal dimensions of various types of sand dune have all remained relatively constant between 1.07 and 1.10, suggesting that they are experiencing a relatively stable evolutionary process. There is a complex interaction between fluvial and aeolian processes of the Horqin Sandy Land, which plays a central role in surface landscape molding. Sand dunes on both sides of different rivers on the Horqin Sandy Land present certain regularity and different characteristics in terms of morphology, developmental scale, and spatial pattern. There are six fluvial-aeolian interaction modes in this area: supply of sand sources by rivers for sand dune development, complete obstruction of dune migration by rivers, partial obstruction of dune migration by rivers, influence of river valleys on dune developmental types on both sides, influence of river valleys on dune developmental scale on both sides, and river diversion due to obstruction and forcing by sand dunes. This study deepens our understanding of the surface process mechanism of the interaction between fluvial and aeolian processes in semi-arid regions, and provides a basis for researches on regional landscape responses in the context of global environmental change.展开更多
Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that c...Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that cases exists where sand is present and may represent a significant technical problem(e.g.,the the Dina II condensate gas field).In the present study,the main factors affecting sand production in this type of reservoir are considered(mechanical properties,stress fields,production system,completion method and gas flow pattern changes during the production process).On this basis,a new liquid-solid coupled porous elasto-plastic 3D sand production model is introduced and validated through comparison with effective sand production data.The related prediction errors are found to be within 15%,which represents the necessary prerequisite for the utilization of such a model for the elaboration of sand prevention measures.展开更多
Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment ...Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.展开更多
基金Financial support for this work,provided by the National Basic Research Program of China(No.2006 CB202300),
文摘In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.
基金supported by the National Key Research and Development Program of China (2016YFC0402404, 2016YFC0402407)the National Natural Science Foundation of China (L1624052, 41330858, 41471226, and 51509203)the Dr.Innovation Fund of Xi’an University of Technology (310-252071505)
文摘Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion. In this study, based on laboratory rainfall simulation experiments, we analyzed rainfall-induced erosion processes on sand-covered loess slopes (SS) with different sand cover patterns (including length and thickness) and uncovered loess slopes (LS) to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion. The grain-size curves of eroded sediments were fitted using the Weibull function. Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS. The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed. The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS. Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes. The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage. Sand cover on loess slopes aggravates loess erosion, not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess, compared with the loess slopes without sand cover. The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount. Furthermore, given the same sand cover pattern, a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion. This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.
基金National Sea Islands Protection and Management Programme
文摘Sand cay is a special kind of islet formed by coral detritus and bioclast, which is common in Nansha Islands of China. Some sand cays play an important role in ocean strategy and economy, but surprisingly we know little about them, especially those recently formed sand cays. In this research, we monitor migration of a new sand cay in Nanxun Jiao(Gaven Reef) using a series of Quick Bird and World View-2 satellite images between June 2006 and August 2013. We conduct a regression between migration distance and wind observational data to examine the migration patterns of the new sand cay. The migration distance is calculated based on the sand cay locations extracted based on Normalized Difference Water Index(NDWI). The wind observational data downloaded from NOAA are reformed into four wind direction vectors. Based on the results of regression, we concluded that the migration of the new sand cay on Nanxun Jiao was significantly associated with the east, west and north wind.East wind was the main influence factor of the migration; its impact strength was almost twice as the west and north wind. The south wind has little effect on the migration of the sand cay, which is partly blocked by the artificial structure in the south.
基金Under the auspices of Natural National Science Foundation of China(No.41671002,41401002)
文摘The interaction between fluvial and aeolian processes can significantly change surface morphology of the Earth. Taking the Horqin Sandy Land as the research area and using Landsat series satellite remote sensing images, this study utilizes geomorphology and landscape ecology to monitor and analyze the aeolian geomorphology characteristics of the Horqin Sandy Land. Results show that the sand dunes of the Horqin Sandy Land are mainly distributed on alluvial plains along the banks of the mainstream and tributaries of the Western Liao River, and the sand dune types tend to simplify from west to east and from south to north. The aeolian geomorphology coverage tend to be decreasing in the past 40 years, with an average annual change rate of 0.31%. While the area of traveling dunes decreased, the area of fixed and semi-fixed dunes increased. The fractal dimensions of various types of sand dune have all remained relatively constant between 1.07 and 1.10, suggesting that they are experiencing a relatively stable evolutionary process. There is a complex interaction between fluvial and aeolian processes of the Horqin Sandy Land, which plays a central role in surface landscape molding. Sand dunes on both sides of different rivers on the Horqin Sandy Land present certain regularity and different characteristics in terms of morphology, developmental scale, and spatial pattern. There are six fluvial-aeolian interaction modes in this area: supply of sand sources by rivers for sand dune development, complete obstruction of dune migration by rivers, partial obstruction of dune migration by rivers, influence of river valleys on dune developmental types on both sides, influence of river valleys on dune developmental scale on both sides, and river diversion due to obstruction and forcing by sand dunes. This study deepens our understanding of the surface process mechanism of the interaction between fluvial and aeolian processes in semi-arid regions, and provides a basis for researches on regional landscape responses in the context of global environmental change.
基金This study has been supported by the Major Science and Technology Project“Comprehensive Research of Exploration Matching and Application of New Technology”(2016ZX5051-3)of CNPC.
文摘Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that cases exists where sand is present and may represent a significant technical problem(e.g.,the the Dina II condensate gas field).In the present study,the main factors affecting sand production in this type of reservoir are considered(mechanical properties,stress fields,production system,completion method and gas flow pattern changes during the production process).On this basis,a new liquid-solid coupled porous elasto-plastic 3D sand production model is introduced and validated through comparison with effective sand production data.The related prediction errors are found to be within 15%,which represents the necessary prerequisite for the utilization of such a model for the elaboration of sand prevention measures.
基金Project(2011D-5006-0105)supported by the Technology Innovation Foundation of CNPC,ChinaProject(SZD0414)supported by the Key Discipline of Mineral Prospecting and Exploration of Sichuan Province,China
文摘Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.