期刊文献+
共找到2,051篇文章
< 1 2 103 >
每页显示 20 50 100
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia 被引量:1
1
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 Cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills 被引量:5
2
作者 JIANG Fei-fei ZHOU Hui +2 位作者 SHENG Jia KOU Yong-yuan LI Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2999-3012,共14页
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C... Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature. 展开更多
关键词 cemented backfill gravel sand TEMPERATURE physico-mechanical properties deformation characteristics
下载PDF
Interaction mechanism of the interface between a deep buried sand and a paleo-weathered rock mass using a high normal stress direct shear apparatus 被引量:4
3
作者 Bai Hanying Li Wenping +2 位作者 Ding Qingfeng Wang Qiqing Yang Dongdong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期623-628,共6页
In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buri... In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion. 展开更多
关键词 Deep buried sand Coal series Paleo-weathered rock mass Roughness of interface Mohr-Coulomb criterion
下载PDF
Triaxial shear behavior of a cement-treated sand——gravel mixture 被引量:5
4
作者 Younes Amini Amir Hamidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期455-465,共11页
A number of parameters,e.g.cement content,cement type,relative density,and grain size distribution,can influence the mechanical behaviors of cemented soils.In the present study,a series of conventional triaxial compre... A number of parameters,e.g.cement content,cement type,relative density,and grain size distribution,can influence the mechanical behaviors of cemented soils.In the present study,a series of conventional triaxial compression tests were conducted on a cemented poorly graded sandegravel mixture containing 30% gravel and 70% sand in both consolidated drained and undrained conditions.Portland cement used as the cementing agent was added to the soil at 0%,1%,2%,and 3%(dry weight) of sandegravel mixture.Samples were prepared at 70% relative density and tested at confining pressures of 50 kPa,100 kPa,and150 kPa.Comparison of the results with other studies on well graded gravely sands indicated more dilation or negative pore pressure in poorly graded samples.Undrained failure envelopes determined using zero Skempton’s pore pressure coefficient (= 0) criterion were consistent with the drained ones.Energy absorption potential was higher in drained condition than undrained condition,suggesting that more energy was required to induce deformation in cemented soil under drained state.Energy absorption increased with increase in cement content under both drained and undrained conditions. 展开更多
关键词 Cementation Poorly graded soil sand-gravel mixture Dilation Absorbed energy Failure criterion
下载PDF
Effects of fluid flow rate and viscosity on gravel-pack plugging and the optimization of sand-control wells production 被引量:2
5
作者 DONG Changyin ZHOU Yugang +4 位作者 CHEN Qiang ZHU Chunming LI Yanlong LI Xiaobo LIU Yabin 《Petroleum Exploration and Development》 2019年第6期1251-1259,共9页
Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the me... Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life. 展开更多
关键词 gravel-pack sand RETENTION experiment plugging law viscosity-velocity index working scheme OPTIMIZATION method plugging simulation
下载PDF
Effects of Different Gravel Mulched Years on Soil Microbial Flora and Physical and Chemical Properties in Gravelsand Mulched Fields 被引量:1
6
作者 Pang Lei Lu Jianlong +3 位作者 Zhou Maoxian Xiao Honglang Fan Zhilong Chai Shouxi 《Meteorological and Environmental Research》 CAS 2018年第1期75-82,共8页
Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mul... Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs. 展开更多
关键词 Arid and semi-arid areas gravel-sand mulched fields (GSMFs) Different gravel mulched years Soil microbes Environmental factors
下载PDF
Pore-based architecture and representative element volume evaluation in artificial sand packs and natural rock cores
7
作者 Peng-Fei Lv Yu Liu +4 位作者 Feng Liu Wen-Zhe Yang Han-Tao Liu Bo Zhang Yong-Chen Song 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1473-1482,共10页
The phenomenon of multiphase flow in porous media is confronted in various fields of science and industrial applications. Owing to the complicated porous structure, the flow mechanisms are still not completely resolve... The phenomenon of multiphase flow in porous media is confronted in various fields of science and industrial applications. Owing to the complicated porous structure, the flow mechanisms are still not completely resolved. A critical and fundamental question is the variation of pore structure and REV sizes among different types of porous media. In this study, a total of 22 porous samples were employed to systematically evaluate the pore-based architecture and REV sizes based on X-ray CT image analysis and pore network modelling. It is found that the irregular grain shapes give rise to large specific areas,narrow and thin throats in identical sand packs. The packs with more types of sands, or composited by the sands with larger difference in diameter, have larger specific area, smaller tortuosity and pore spaces.Based on the REV measurement through porosity solely, the REV sizes of sand packs are generally in the order of magnitude of 10^(-2) m L, while it is at least one order of magnitude smaller in rock cores. Our result indicates that the combination of porosity and Euler number is an effective indicator to get the REV sizes of porous samples. 展开更多
关键词 Pore structure REV sand pack rock core Pore network modelling
下载PDF
An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia
8
作者 Rahim Kadkhodaie Ilkhchi Reza Rezaee +2 位作者 Reza Moussavi Harami Henrik Friis Ali Kadkhodaie Ilkhchi 《Open Journal of Geology》 2014年第8期373-385,共13页
Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and ce... Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs. 展开更多
关键词 TIGHT sandS Electorofacies Hydraulic Flow Unit rock Type RESERVOIR Characteristics
下载PDF
Long-term effects of gravel-sand mulch thickness on soil microbes and enzyme activities in semi-arid Loess Plateau,Northwest China
9
作者 ChengZheng Zhao YaJun Wang +2 位作者 Yang Qiu ZhongKui Xie YuBao Zhang 《Research in Cold and Arid Regions》 CSCD 2021年第6期510-521,共12页
In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plate... In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities.We found that after long term gravel-sand mulch,compared with bare ground,soil organic matter,alkali nitrogen,conductivity decreased,while pH and soil moisture increased.Urease,saccharase and catalase decreased with increased mulch thickness,while alkaline phosphatase was reversed.The results of Illumina MiSeq sequencing shows that after gravel-sand mulch,the bacterial and fungal community structure was different from bare land,and the diversity was reduced.Compared with bare land,the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness,and Actinobacteria was opposite.Also,at the fungal genus level,Fusarium abundance was significantly reduced,and Remersonia was significantly increased,compared with bare land.Redundancy analysis(RDA)revealed that soil environmental factors were important drivers of bacterial community changes.Overall,this study revealed some of the reasons for soil degradation after long term gravel-sand mulch.Therefore,it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality. 展开更多
关键词 gravel and sand mulch soil microbes soil enzyme activities soil degradation soil quality
下载PDF
Equal Volumes of Sand and Gravel Concrete Mix Ratios in Cameroon and Its Effect on Concrete Compressive Strength
10
作者 Patrick Bame Che Yamb Bell Emmanuel Ndigui Billong 《World Journal of Engineering and Technology》 2022年第3期539-549,共11页
In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi... In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25. 展开更多
关键词 Conventional Concrete Rationalized Concrete Mix Ratio Compressive Strength Equal Volumes of sand and gravel
下载PDF
The Feasibility of Basalt Rock Powder and Superfine Sand as Partial Replacement Materials for Portland Cement and Artificial Sand in Cement Mortar
11
作者 Hongxia Qiao Desire Ndahirwa +1 位作者 Yuanke Li Jinke Liang 《Research and Application of Materials Science》 2019年第1期1-9,共9页
The research gap on the feasibility of basalt rock powder(BRP)and superfine sand(SS)in preparation of cement mortar is significant.This study examines probable changes occurred in the modified cement mortar due to inc... The research gap on the feasibility of basalt rock powder(BRP)and superfine sand(SS)in preparation of cement mortar is significant.This study examines probable changes occurred in the modified cement mortar due to incorporation of certain quantity of basalt rock powder and superfine sand in mixture proportion.The cement mortar included Portland cement,artificial sand and water as principal mixture constituents.Then,basalt rock powder and superfine sand were added as partial replacement materials for Portland cement and artificial sand respectively.Therefore,replacement percentages were 10%,15%,20%,25%and 30%when the basalt rock powder replaced Portland cement and in case the artificial sand was replaced by superfine sand,10%,20%,30%,40%and 50%.Then,the strength indexes such as flexural strength,compressive strength,ultrasonic pulse velocity and dynamic elastic modulus were investigated.The results show that the presence of basalt rock powder in mixture proportion increased the flexural and compressive strengths of cement mortar however the cement mortar that contained superfine sand illustrated inadequate mechanical performance as flexural and compressive strengths decreased remarkably.Moreover,when basalt rock powder and superfine sand were included together in mixture proportion,the cement mortar’s mechanical performance declined compared to that of the reference cement mortar.Despite the fact that basalt rock powder and superfine sand weakened the cement mortar’s mechanical properties,it was found that they can be added into the cement mortar as partial replacement of Portland cement and artificial sand in the following ratios:from 10%to 25%when basalt rock powder replaces Portland cement and from 10%to 20%when artificial sand is replaced by superfine sand. 展开更多
关键词 BASALT rock powder superfine sand artificial sand CEMENT MORTAR mechanical properties
下载PDF
Sieving Error from Dry-Separating Silt-Sand-Gravel Soils
12
作者 Hans Ronnqvist 《Open Journal of Civil Engineering》 2019年第4期311-318,共8页
The dry-separation method is an alternative to the wet-preparation in the current European Standard for the determination of particle size distributions by the sieving of soils. Due to the risk of error, dry-separatio... The dry-separation method is an alternative to the wet-preparation in the current European Standard for the determination of particle size distributions by the sieving of soils. Due to the risk of error, dry-separation is cautioned against in the standard;however, there is no additional guidance as to when it is unsuitable nor for the magnitude of error that it may introduce. This study investigates the dry-separation method as an alternative by comparing with the conventional method of Wet-preparation in terms of particle-size distributions of eight cohesionless sand-gravel soils with varying amounts of nonplastic fines. The findings indicate a gradually increasing sieving error for fractions at minus 0.5 mm with the amount of fines in the soil, and depending on the fines content of the soil, dry-separation introduced errors upwards of 45% in silt-sand-gravel soils. An empirical best-fit formula is proposed for the estimation of the error using the dry-preparation method on this type of soil. Furthermore, to avoid sieving errors, the results suggest that the dry-separation method should not be used for silt-sand-gravel soils exceeding 2% silt size fractions. 展开更多
关键词 Laboratory Tests Particle-Scale Behavior SILTS sandS gravelS Standards & Codes of Practice
下载PDF
The Hydrochemical Characteristics of a Stressed Sand-Gravel Aquifer: Kazan Plain, Ankara, Turkey
13
作者 Ahmet Apaydin Beril Salman Akin Eda Kaya 《Journal of Environmental Protection》 2021年第11期961-982,共22页
Over-exploitation and sand-gravel mining affect groundwater resources in terms of both quantity and quality. Groundwater level and well yields in and around the sand-gravel pits significantly decrease. Sand-gravel min... Over-exploitation and sand-gravel mining affect groundwater resources in terms of both quantity and quality. Groundwater level and well yields in and around the sand-gravel pits significantly decrease. Sand-gravel mining also changes the turbidity levels and temperature of groundwater. Reduction and destruction of valuable aquifers are significant issues. In this case, the natural state of the aquifer disappears. The Kazan Plain in central Turkey is a dramatic example of these kinds of results. The productive sand-gravel aquifer in the Kazan plain has been substantially damaged due to intensive sand-gravel mining since the 1980s. Additionally, over-exploitation has caused notable declines in groundwater levels, particularly in the 2000s. This study focuses on the hydrogeochemical situation of the Kazan Plain alluvium aquifer after intensive sand-gravel mining and over-exploitation. Groundwater samples were collected seasonally in 2015, five years after the over-exploitation and heavy sand-gravel mining. The decline reached 20 m (about half of the saturated thickness of the sand-gravel aquifer) in the region where the intensive groundwater abstraction lasted until 2010. Some quarries continued to operate until 2010, but after that mining activity continued only at a minimum level. Today, groundwater quality has been significantly degraded due to the over-exploitation of sand-gravel mining and also the cessation of recharge from fresh river water. 展开更多
关键词 Chemical Characteristic sand-gravel Mining Groundwater Over-Exploitation
下载PDF
洛阳盾构隧道地表沉降Peck公式参数修正
14
作者 郜新军 魏文宇 +1 位作者 李珊珊 苏庆辉 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期75-81,共7页
为准确预测洛阳粉质黏土与砂卵石复合地层中的盾构隧道地表沉降量,采用线性回归拟合方法,对洛阳地铁某区间隧道盾构掘进时的地表沉降监测数据进行拟合,引入地表最大沉降修正系数α和沉降槽宽度修正系数β对单线Peck公式进行修正。结果表... 为准确预测洛阳粉质黏土与砂卵石复合地层中的盾构隧道地表沉降量,采用线性回归拟合方法,对洛阳地铁某区间隧道盾构掘进时的地表沉降监测数据进行拟合,引入地表最大沉降修正系数α和沉降槽宽度修正系数β对单线Peck公式进行修正。结果表明:针对单线隧道,采用线性回归方法拟合隧道横断面地表沉降得到的曲线与实际监测数据吻合度高,当修正系数α为0.4~0.9、β为0.5~0.7时得到的修正Peck公式精度最高;针对双线隧道,该地层下的地表沉降基本呈双峰“W”形,双线隧道的土体损失率η和沉降槽宽度系数K的分布区间分别为0.2%~0.8%和0.2~0.5,平均值分别为0.45%和0.37,且先行线的土体损失率均值、沉降槽宽度系数均值分别为后行线的1.4倍、1.3倍。研究成果可为洛阳典型粉质黏土与砂卵石复合地层中盾构隧道后续施工提供数据支撑。 展开更多
关键词 隧道盾构 粉质黏土与砂卵石复合地层 PECK公式 线性拟合 地表沉降 修正系数
下载PDF
A novel model for assessing the pore structure of tight sands and its application 被引量:9
15
作者 李潮流 周灿灿 +3 位作者 李霞 胡法龙 张莉 王伟俊 《Applied Geophysics》 SCIE CSCD 2010年第3期283-291,294,共10页
Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sand... Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly. 展开更多
关键词 low permeability tight sand pore-structure NMR rock physics
下载PDF
深基坑强富水砂砾层咬合桩施工技术应用与研究
16
作者 江雨宸 《建筑技术开发》 2025年第1期133-136,共4页
城市用地面积日益紧张,为满足使用需求,城市建设须充分利用地下空间,即地下室开挖深度越来越大,但与之对应的是在施工时一些复杂地质下基坑的支护难度也随之增加。咬合桩是富水砂砾层地质条件下深基坑支护的一种极为有效的形式,如何提... 城市用地面积日益紧张,为满足使用需求,城市建设须充分利用地下空间,即地下室开挖深度越来越大,但与之对应的是在施工时一些复杂地质下基坑的支护难度也随之增加。咬合桩是富水砂砾层地质条件下深基坑支护的一种极为有效的形式,如何提高咬合桩在富水砂砾层地质条件下的施工质量和施工效率是咬合桩支护施工中的关键。实际工程中应用全套管全回转钻机进行咬合桩施工,可有效地使钢筋混凝土桩和素混凝土桩紧密咬合,集支护与截水效果于一体,有效保证了基坑稳定;且施工时噪声小,无泥浆污染,兼之充盈系数小,节省材料,经济效益高,故具有较高的推广价值。 展开更多
关键词 全套管咬合桩 基坑 富水砂砾层
下载PDF
Porosity of crushed rock layer and its impact on thermal regime of Qinghai-Tibet Railway embankment 被引量:6
17
作者 LIU Ming-hao LI Guo-yu +2 位作者 NIU Fu-jun LIN Zhan-ju LIN Zhan-ju 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期977-987,共11页
It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong w... It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong winds, cold and high radiation conditions on the Qinghai-Tibet Plateau(QTP), both wind-blown sand and/or weathered rock debris blockage might reduce the porosity of the rock layers, resulting in weakening the cooling effect of the crushed rock layer(CRL) in the crushed rock embankment(CRE) of the Qinghai-Tibet Railway(QTR) in the permafrost regions. Such a process might warm the underlying permafrost, and further lead to potential threat to the QTR's integrity and stability. The different porosities corresponding to the different equivalent rock diameters were measured in the laboratory using water saturation method, and an empirical exponential equation between porosity and equivalent rock diameter was proposed based on the measured experimental data and an important finding is observed in our and other experiments that the larger size crushed rock tends to lead to the larger porosity when arbitrarily packing. Numerical tests were carried out to study impacts of porosity on permafrost degradation and differential thaw depths between the sunny and shady shoulders. The results show that the decrease in porosity due to wind-blown sand or weathered rock debris clogging can worsen the permafrost degradation and lead to the asymmetric thermal regime. In the traditional embankment(without the CRL within it), the largest differential thaw depth can reach up to 3.1 m. The optimized porosity appears in a range from 34% to 42% corresponding to equivalent rock diameter from 10 to 20.5 cm. The CRE with the optimized porosities can make underlying permafrost stable and 0 ℃ isotherms symmetric in the coming 50 years, even under the condition that the climate warming can lead to permafrost degradation under the CRE and the traditional embankment. Some practical implications were proposed to benefit the future design, construction and maintenance of CRE in permafrost regions. 展开更多
关键词 Qinghai-Tibet Railway crushed rock embankment POROSITY wind-blown sand permafrost degradation
下载PDF
Effects of gravel mulch on aeolian transport:a field wind tunnel simulation 被引量:6
18
作者 KeCun ZHANG WeiMin ZHANG +2 位作者 LiHai TAN ZhiShan AN Hao ZHANG 《Journal of Arid Land》 SCIE CSCD 2015年第3期296-303,共8页
The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by mea... The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by means of a mobile wind tunnel simulation.The tested gravel coverage increased from 5% to 80%,with a progressive increment of 5%.The gravels used in the experiments have three sizes in diameter.Wind velocities were measured using 10 sand-proof pitot-static probes,and mean velocity fields were obtained and discussed.The results showed that mean velocity fields obtained over different gravel mulches were similar.The analysis of wind speed patterns revealed an inherent link between gravel mulches and mean airflow characteristics on the gravel surfaces.The optimal gravel coverage is considered to be the critical level above or below which aeolian transport characteristics differ strongly.According to the present study,the optimal gravel coverage was found to be around 30% or 40%.Threshold velocity linearly increased with gravel coverage.Sand transport rate first increased with height above the wind tunnel floor(Hf),reaching a peak at some midpoint,and then decreased. 展开更多
关键词 gravel mulch wind speed profile sand transport drag velocity
下载PDF
Large scale sand saltation over hard surface:a controlled experiment in still air 被引量:1
19
作者 LIU Benli WANG Zhaoyun +1 位作者 NIU Baicheng QU Jianjun 《Journal of Arid Land》 SCIE CSCD 2021年第6期599-611,共13页
Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand sur... Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand surface.Gravels usually have different faces,causing distinct response of the impacting grains,but the effects of the grain and gravel-surface contact angle on grain rebound are not yet well quantified.We performed full-range controlled experiments of grain saltation using different contact angles,grain sizes and impact speeds in still air,to show that contact angle increases the height of representative saltation path but decreases particle travel length.The results were compared with outputs from the COMprehensive numerical model of SALTation(COMSALT).Large saltation height of 4.8 m and length of 9.0 m were recorded.The maximum and representative saltation height over the gravel surface were found to be about 4.9 times and 12.8 times those over the loose sandy surface,respectively.The maximum saltation length may be reduced by 58%and the representative saltation height may be increased by 77%as contact angle increases from 20°to 40°.We further showed that the collision inertia contributes 60%of the saltation length,and wind contributes to the other 40%.These quantitative findings have important implications for modeling saltation trajectory over gravel surface. 展开更多
关键词 sand saltation TRAJECTORY gravel surface contact angle full-scale experiment
下载PDF
Hydrocarbon Generation and Expulsion of the Upper Triassic T3x5Source Rocks in the Western Sichuan Depression: Assessment for Unconventional Natural Gas 被引量:3
20
作者 GUO Yingchun SONG Yan +3 位作者 PANG Xiongqi WANG Youwei YANG Keming LI Boyuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期175-186,共12页
Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in ... Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick (generally 〉200 m), and have a high total organic content (TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution (Ro〉1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance (Ro) reaching 1.06%. and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from Tax5 source rocks is 3.14x10^10 t and 1.86x10^10 t, respectively, with a residual amount of 1.28x10^10t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3xs source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3x10s t. Geological resources of shale gas are up to 1.05x10TM t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales. 展开更多
关键词 source rocks evaluation hydrocarbon generation and expulsion tight-sand gas shale gas resource assessment Upper Triassic Western Sichuan Depression
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部