The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation...The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.展开更多
To study the infl uence of the preparation method on Cu active sites and the reaction pathway in NO reduction by NH 3 over Cu-SSZ-13, three kinds of catalysts (Cu ion-exchanged SSZ-13 1 , one-pot synthesis Cu-SSZ-13 2...To study the infl uence of the preparation method on Cu active sites and the reaction pathway in NO reduction by NH 3 over Cu-SSZ-13, three kinds of catalysts (Cu ion-exchanged SSZ-13 1 , one-pot synthesis Cu-SSZ-13 2 , and Ce 0.017 -Fe 0.017 /Cu- SSZ-13 [Ce and Fe ion exchange on the basis of Cu-SSZ-13 2 ]) were prepared. In situ diff use refl ectance infrared Fourier transform spectroscopy and H 2 temperature program reduction were used to study the diff erences in the reaction pathways and Cu active sites over the three kinds of catalysts. Density functional theory was employed to study the eff ect of active sites on the reaction pathway. In situ DRIFTS showed that the reaction pathway on Cu-SSZ-13 1 during NO oxidation was diff erent from that on Cu-SSZ-13 2 and Ce 0.017 -Fe 0.017 /Cu-SSZ-13. The diff erence was that intermediate NO 2 was involved in the selective catalytic reduction reaction on Cu-SSZ-13 1 , whereas NO 2 was not found during the reaction process on Cu-SSZ-13 2 and Ce 0.017 -Fe 0.017 /Cu-SSZ-13. H 2 -TPR studies revealed that the three catalysts had diff erent Cu active sites, which were located in the six-membered ring, eight-membered ring, and CHA cage. On the basis of DFT studies, NO and O 2 were more conducive to form nitrate when the Cu species was on the six- and eight-membered rings;by contrast, NO and O 2 were more conducive to form NO 2 in the cage. These results showed that diff erent preparation methods led to various Cu active sites, and varying Cu active sites could lead to diff erent NO oxidation processes.展开更多
Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper p...Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper presents a combined active islanding detection method, which consists of active frequency drift method and automatic phase-shift method. The traditional active anti-islanding methods of grid-connected PV inverters bear nondetection zone possibilities for certain paralleled RLC loads. The combined method shows islanding detection ability effectively, and it can eliminate nondetection zones even in the worst case conditions. Simulation in different load conditions is performed for verification.展开更多
Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions were(quasi) in situ studied using temperature programmed surface reaction spectra, diffuse reflect...Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions were(quasi) in situ studied using temperature programmed surface reaction spectra, diffuse reflectance Fourier transform infrared spectroscopy, inelastic neutron scattering spectroscopy and electron paramagnetic resonance. CO undergoes disproportion reaction to produce gaseous CO2 and surface carbon adatoms, and adsorbs to form surface formate species. H2 adsorption forms dominant irreversibly-adsorbed surface hydroxyl groups and interstitial H species and very minor surface Zn-H species. Surface formate species and hydroxyl groups react to produce CO2 and H2, while surface carbon adatoms are hydrogenated by surface Zn-H species sequentially to produce CH(a), CH2(a), CH3(a)and eventually gaseous CH4. The ZnO nanoplates, exposing a higher fraction of Zn-ZnO(0001) and OZnO(000–1) polar facets, are more active than the ZnO powders to catalyze CO hydrogenation to CH4.These results provide fundamental understanding of the reaction mechanisms and structural effects of CO hydrogenation reaction catalyzed by ZnO-based catalysts.展开更多
There are several key issues in dynamic monitoring of subsurface structures,such as signal-to-noise ratio( SNR),repeatability of seismic sources and accurate measurement of velocity. Using a large volume airgun source...There are several key issues in dynamic monitoring of subsurface structures,such as signal-to-noise ratio( SNR),repeatability of seismic sources and accurate measurement of velocity. Using a large volume airgun source,we constructed a high-performance active system which mainly consists of airgun excitation and signal reception. In order to reduce the platform drift from the shot position,we put forward the platform drift control technique. Experimental results show that the technique can effectively solve the problem of platform drift from the set position under fluid impact after airgun excitation. The results of this study can be a reference for repeated airgun source detection at certain excitation sites.展开更多
Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detect...Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detection.In addition,multi-inverter networks connecting the distribution system point of common coupling(PCC)create islanding at paralleling inverters,which adds the vulnerability of islanding detection.Furthermore,available islanding detection must overcome more challenges from non-detection zones(NDZs)under reduced power mismatches.Therefore,in this study,a new method called parameter self-adapting active islanding detection was utilized to minimize the dilution effect and reduce NDZs in multi-inverter power systems.The method utilizes an active frequency drift(AFD)method and applies a positive feedback gain of adoption parameters,which significantly minimizes NDZs at parallel inverters.The simulation and experimental outcomes indicate that the proposed method can effectively weaken the dilution effect in multi-inverter networks connecting the distribution system PCC.展开更多
数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主...数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主动学习方法(Online active learning method for imbalanced data stream,OALM-IDS).AdaBoost是一种将多个弱分类器经过迭代生成强分类器的集成分类方法,AdaBoost.M2引入了弱分类器的置信度,此类方法常用于静态数据.定义了基于非平衡比率和自适应遗忘因子的训练样本重要性度量,从而使AdaBoost.M2方法适用于非平衡数据流,提升了非平衡数据流集成分类器的性能.提出了边际阈值矩阵的自适应调整方法,优化了标签请求策略.将概念漂移程度融入模型构建过程中,定义了基于概念漂移指数的自适应遗忘因子,实现了漂移后的模型重构.在6个人工数据流和4个真实数据流上的对比实验表明,提出的非平衡数据流在线主动学习方法的分类性能优于其他5种非平衡数据流学习方法.展开更多
预测性流程监控可以在业务流程运行过程中提供及时的信息,以便采取措施来应对潜在风险,如何提高流程预测的准确度一直受到高度关注。现有的研究方法大部分都在静态环境下引入,很少有结合数字孪生技术用于动态环境的流程预测。为此,提出...预测性流程监控可以在业务流程运行过程中提供及时的信息,以便采取措施来应对潜在风险,如何提高流程预测的准确度一直受到高度关注。现有的研究方法大部分都在静态环境下引入,很少有结合数字孪生技术用于动态环境的流程预测。为此,提出了一个基于概念漂移检测的方法,并构建数字孪生流程预测模型(digital twin based on concept drift,DTBCD)预测下一个活动。首先利用事件流行为关系和权重散度将流程中的活动进行特征提取,得到数据流的特征集,其次进行漂移检测,动态选择特征集输入人工智能模型中训练并预测下一个活动,然后运用物联网和云计算等先进技术创建数字孪生虚拟环境,最后得到基于概念漂移的数字孪生模型。通过公开可用的数据集进行评估分析,实验结果表明,提出的方法能够有效提高预测的准确性。展开更多
孤岛检测技术是分布式光伏规模化接入配电网的关键技术。正反馈主动移频法(active frequency drift with positive feedback,AFDPF)是目前应用最广泛的主动式孤岛检测法之一,针对其存在的对电能质量影响大、可靠性差的问题,提出一种基...孤岛检测技术是分布式光伏规模化接入配电网的关键技术。正反馈主动移频法(active frequency drift with positive feedback,AFDPF)是目前应用最广泛的主动式孤岛检测法之一,针对其存在的对电能质量影响大、可靠性差的问题,提出一种基于谐波电压突变与盲区识别的自适应混合式孤岛检测法。首先,提出以突变量检测加延时的方式替代传统谐波电压检测法的总谐波失真(total harmonic distortion,THD)值整定,构建孤岛保护启动判据;其次,基于过/欠压及过/欠频法的检测盲区识别,构建扰动自适应注入判据;最后,基于判据系数以及频率波动,完成传统AFDPF的自适应改进,并推导检测无盲区时正反馈系数的取值范围。仿真结果表明,该方法可有效过滤非孤岛工况,避免因不必要扰动注入引起的电能质量下降问题,通过选择合适的正反馈系数,改进AFDPF检测快速且不存在盲区。所提方法可兼顾快速性、可靠性、实用性和电能质量等多方面因素,对于分布式光伏规模化接入配电网的孤岛检测问题研究具有重要意义。展开更多
孤岛检测是光伏系统并网必备的功能,要求既能快速检测出孤岛状态,同时又尽量减少对电网的不良影响。孤岛检测性能的好坏不仅取决于所采用的孤岛检测策略,也取决于检测策略中参数的设置是否合理,但目前的研究在参数优化的理论指导方面严...孤岛检测是光伏系统并网必备的功能,要求既能快速检测出孤岛状态,同时又尽量减少对电网的不良影响。孤岛检测性能的好坏不仅取决于所采用的孤岛检测策略,也取决于检测策略中参数的设置是否合理,但目前的研究在参数优化的理论指导方面严重不足。该文通过对主动移频式孤岛检测方法的检测盲区进行分析,推导了带线性正反馈主动移频式(active frequency drift with positive feedback,AFDPF)孤岛检测方法的盲区大小与反馈增益间的关系,并得出特定负载下孤岛检测无盲区AFDPF反馈增益的取值范围,从而为AFDPF孤岛检测方法的参数优化提供了理论指导。展开更多
基金financially supported by the State Key Development Program for Basic Research of China (No.2014CB643402)the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources of Central South University
文摘The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.
文摘To study the infl uence of the preparation method on Cu active sites and the reaction pathway in NO reduction by NH 3 over Cu-SSZ-13, three kinds of catalysts (Cu ion-exchanged SSZ-13 1 , one-pot synthesis Cu-SSZ-13 2 , and Ce 0.017 -Fe 0.017 /Cu- SSZ-13 [Ce and Fe ion exchange on the basis of Cu-SSZ-13 2 ]) were prepared. In situ diff use refl ectance infrared Fourier transform spectroscopy and H 2 temperature program reduction were used to study the diff erences in the reaction pathways and Cu active sites over the three kinds of catalysts. Density functional theory was employed to study the eff ect of active sites on the reaction pathway. In situ DRIFTS showed that the reaction pathway on Cu-SSZ-13 1 during NO oxidation was diff erent from that on Cu-SSZ-13 2 and Ce 0.017 -Fe 0.017 /Cu-SSZ-13. The diff erence was that intermediate NO 2 was involved in the selective catalytic reduction reaction on Cu-SSZ-13 1 , whereas NO 2 was not found during the reaction process on Cu-SSZ-13 2 and Ce 0.017 -Fe 0.017 /Cu-SSZ-13. H 2 -TPR studies revealed that the three catalysts had diff erent Cu active sites, which were located in the six-membered ring, eight-membered ring, and CHA cage. On the basis of DFT studies, NO and O 2 were more conducive to form nitrate when the Cu species was on the six- and eight-membered rings;by contrast, NO and O 2 were more conducive to form NO 2 in the cage. These results showed that diff erent preparation methods led to various Cu active sites, and varying Cu active sites could lead to diff erent NO oxidation processes.
文摘Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper presents a combined active islanding detection method, which consists of active frequency drift method and automatic phase-shift method. The traditional active anti-islanding methods of grid-connected PV inverters bear nondetection zone possibilities for certain paralleled RLC loads. The combined method shows islanding detection ability effectively, and it can eliminate nondetection zones even in the worst case conditions. Simulation in different load conditions is performed for verification.
基金the National Key R&D Program of Ministry of Science and Technology of China(2017YFB0602205)the National Natural Science Foundation of China(21525313,91745202,91945301)+4 种基金the Chinese Academy of Sciencesthe Changjiang Scholars Program of Ministry of Education of Chinathe financial support of the China Scholarship Councilsupported by the Scientific User Facilities Division,Office of Basic Energy Sciences,US DOE,under Contract No.DE-AC0500OR22725 with UT Battelle,LLCsupported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Chemical Sciences,Geosciences,and Biosciences Division,Catalysis Science Program。
文摘Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions were(quasi) in situ studied using temperature programmed surface reaction spectra, diffuse reflectance Fourier transform infrared spectroscopy, inelastic neutron scattering spectroscopy and electron paramagnetic resonance. CO undergoes disproportion reaction to produce gaseous CO2 and surface carbon adatoms, and adsorbs to form surface formate species. H2 adsorption forms dominant irreversibly-adsorbed surface hydroxyl groups and interstitial H species and very minor surface Zn-H species. Surface formate species and hydroxyl groups react to produce CO2 and H2, while surface carbon adatoms are hydrogenated by surface Zn-H species sequentially to produce CH(a), CH2(a), CH3(a)and eventually gaseous CH4. The ZnO nanoplates, exposing a higher fraction of Zn-ZnO(0001) and OZnO(000–1) polar facets, are more active than the ZnO powders to catalyze CO hydrogenation to CH4.These results provide fundamental understanding of the reaction mechanisms and structural effects of CO hydrogenation reaction catalyzed by ZnO-based catalysts.
基金jointly sponsored by the National Natural Science Foundation of China(41574044)the Special Fund for Earthquake Scientific Research in the Public Welfare of CEA(201308011)
文摘There are several key issues in dynamic monitoring of subsurface structures,such as signal-to-noise ratio( SNR),repeatability of seismic sources and accurate measurement of velocity. Using a large volume airgun source,we constructed a high-performance active system which mainly consists of airgun excitation and signal reception. In order to reduce the platform drift from the shot position,we put forward the platform drift control technique. Experimental results show that the technique can effectively solve the problem of platform drift from the set position under fluid impact after airgun excitation. The results of this study can be a reference for repeated airgun source detection at certain excitation sites.
基金supported by the National Natural Science Foundation of China under Grant No.61671109.
文摘Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detection.In addition,multi-inverter networks connecting the distribution system point of common coupling(PCC)create islanding at paralleling inverters,which adds the vulnerability of islanding detection.Furthermore,available islanding detection must overcome more challenges from non-detection zones(NDZs)under reduced power mismatches.Therefore,in this study,a new method called parameter self-adapting active islanding detection was utilized to minimize the dilution effect and reduce NDZs in multi-inverter power systems.The method utilizes an active frequency drift(AFD)method and applies a positive feedback gain of adoption parameters,which significantly minimizes NDZs at parallel inverters.The simulation and experimental outcomes indicate that the proposed method can effectively weaken the dilution effect in multi-inverter networks connecting the distribution system PCC.
文摘数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主动学习方法(Online active learning method for imbalanced data stream,OALM-IDS).AdaBoost是一种将多个弱分类器经过迭代生成强分类器的集成分类方法,AdaBoost.M2引入了弱分类器的置信度,此类方法常用于静态数据.定义了基于非平衡比率和自适应遗忘因子的训练样本重要性度量,从而使AdaBoost.M2方法适用于非平衡数据流,提升了非平衡数据流集成分类器的性能.提出了边际阈值矩阵的自适应调整方法,优化了标签请求策略.将概念漂移程度融入模型构建过程中,定义了基于概念漂移指数的自适应遗忘因子,实现了漂移后的模型重构.在6个人工数据流和4个真实数据流上的对比实验表明,提出的非平衡数据流在线主动学习方法的分类性能优于其他5种非平衡数据流学习方法.
文摘预测性流程监控可以在业务流程运行过程中提供及时的信息,以便采取措施来应对潜在风险,如何提高流程预测的准确度一直受到高度关注。现有的研究方法大部分都在静态环境下引入,很少有结合数字孪生技术用于动态环境的流程预测。为此,提出了一个基于概念漂移检测的方法,并构建数字孪生流程预测模型(digital twin based on concept drift,DTBCD)预测下一个活动。首先利用事件流行为关系和权重散度将流程中的活动进行特征提取,得到数据流的特征集,其次进行漂移检测,动态选择特征集输入人工智能模型中训练并预测下一个活动,然后运用物联网和云计算等先进技术创建数字孪生虚拟环境,最后得到基于概念漂移的数字孪生模型。通过公开可用的数据集进行评估分析,实验结果表明,提出的方法能够有效提高预测的准确性。
文摘孤岛检测技术是分布式光伏规模化接入配电网的关键技术。正反馈主动移频法(active frequency drift with positive feedback,AFDPF)是目前应用最广泛的主动式孤岛检测法之一,针对其存在的对电能质量影响大、可靠性差的问题,提出一种基于谐波电压突变与盲区识别的自适应混合式孤岛检测法。首先,提出以突变量检测加延时的方式替代传统谐波电压检测法的总谐波失真(total harmonic distortion,THD)值整定,构建孤岛保护启动判据;其次,基于过/欠压及过/欠频法的检测盲区识别,构建扰动自适应注入判据;最后,基于判据系数以及频率波动,完成传统AFDPF的自适应改进,并推导检测无盲区时正反馈系数的取值范围。仿真结果表明,该方法可有效过滤非孤岛工况,避免因不必要扰动注入引起的电能质量下降问题,通过选择合适的正反馈系数,改进AFDPF检测快速且不存在盲区。所提方法可兼顾快速性、可靠性、实用性和电能质量等多方面因素,对于分布式光伏规模化接入配电网的孤岛检测问题研究具有重要意义。
文摘孤岛检测是光伏系统并网必备的功能,要求既能快速检测出孤岛状态,同时又尽量减少对电网的不良影响。孤岛检测性能的好坏不仅取决于所采用的孤岛检测策略,也取决于检测策略中参数的设置是否合理,但目前的研究在参数优化的理论指导方面严重不足。该文通过对主动移频式孤岛检测方法的检测盲区进行分析,推导了带线性正反馈主动移频式(active frequency drift with positive feedback,AFDPF)孤岛检测方法的盲区大小与反馈增益间的关系,并得出特定负载下孤岛检测无盲区AFDPF反馈增益的取值范围,从而为AFDPF孤岛检测方法的参数优化提供了理论指导。