The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical si...The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1.展开更多
When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux...When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as ran- dom variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject liftoff probabilities versus the incident and creeping velocities are predicted.展开更多
The structure and principle of the PMAC (Programmable Multi-Axis Controller) were described.The implementation of PMAC hardware was illustrated by taking the winding process of one cell for example.The main obvious ch...The structure and principle of the PMAC (Programmable Multi-Axis Controller) were described.The implementation of PMAC hardware was illustrated by taking the winding process of one cell for example.The main obvious character of PMAC is to complete a movement program in turns of movement sequence.When PMAC is notified to execute a motion program, it will process one command every time and finish all the calculation to be ready for real action.PMAC card works always prior to real action, when necessary, it can always coordinate correctly with the action which will be carried out soon PMAC will automatically carry out the function of resource management periodically to make sure that the whole system is in correct condition.And also, it can communicate with host computer anytime even during a movement series.The responsibility of PMAC is to organize command according to priority to optimize the system, so as to run the application program safely and efficiently.The function and application of control were emphasized.展开更多
文摘The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1.
基金The project was supported by the National Natural Science Foundation of China(10532040,10601022)
文摘When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as ran- dom variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject liftoff probabilities versus the incident and creeping velocities are predicted.
文摘The structure and principle of the PMAC (Programmable Multi-Axis Controller) were described.The implementation of PMAC hardware was illustrated by taking the winding process of one cell for example.The main obvious character of PMAC is to complete a movement program in turns of movement sequence.When PMAC is notified to execute a motion program, it will process one command every time and finish all the calculation to be ready for real action.PMAC card works always prior to real action, when necessary, it can always coordinate correctly with the action which will be carried out soon PMAC will automatically carry out the function of resource management periodically to make sure that the whole system is in correct condition.And also, it can communicate with host computer anytime even during a movement series.The responsibility of PMAC is to organize command according to priority to optimize the system, so as to run the application program safely and efficiently.The function and application of control were emphasized.