期刊文献+
共找到900篇文章
< 1 2 45 >
每页显示 20 50 100
Nuclear magnetic resonance experiments on the time-varying law of oil viscosity and wettability in high-multiple waterflooding sandstone cores
1
作者 JIA Hu ZHANG Rui +2 位作者 LUO Xianbo ZHOU Zili YANG Lu 《Petroleum Exploration and Development》 SCIE 2024年第2期394-402,共9页
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por... A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability. 展开更多
关键词 sandstone high-multiple waterflooding nuclear magnetic resonance oil viscosity rock wettability time-varying law
下载PDF
Non-Darcy flow in oil accumulation (oil displacing water) and relative permeability and oil saturation characteristics of low-permeability sandstones 被引量:13
2
作者 Zeng Jianhui Cheng Shiwei +2 位作者 Kong Xu Guo Kai Wang Hongyu 《Petroleum Science》 SCIE CAS CSCD 2010年第1期20-30,共11页
Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or ca... Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity. 展开更多
关键词 Non-Darcy flow relative permeability oil saturation low-permeability sandstone
下载PDF
Donghe Sandstone Subtle Reservoir Exploration and Development Technology in Hade 4 Oilfield 被引量:9
3
作者 SunLongde ZhouXinyuan SongWenjie JiangTongwen ZhuWeihong YangPing NiuYujie DiHongli 《Petroleum Science》 SCIE CAS CSCD 2004年第2期35-43,共9页
Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude ... Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude below 34m, at the bottom of the Carboniferous. The Donghe sandstone reservoir consists of littoral facies deposited quartz sandstones of the transgressive system tract, overlapping northward and pinching out. Exploration and development confirms that water-oil contact tilts from the southeast to the northwest with a drop height of nearly 80m. The reservoir, under the control of both the stratigraphic overlap pinch-out and tectonism, is a typical subtle reservoir. The Donghe sandstone reservoir in Hade 4 oilfield also has the feature of a large oil-bearing area (over 130 km2 proved), a small thickness (average efficient thickness below 6m) and a low abundance (below 50 × 104t/km2). Moreover, above the target layer developed a set of igneous rocks with an uneven thickness in the Permian formation, thus causing a great difficulty in research of the velocity field. Considering these features, an combination mode of exploration and development is adopted, namely by way of whole deployment, step-by-step enforcement and rolling development with key problems to be tackled, in order to further deepen the understanding and enlarge the fruits of exploration and development. The paper technically focuses its study on the following four aspects concerning problem tackling. First, to strengthen the collecting, processing and explanation of seismic data, improve the resolution, accurately recognize the pinch-out line of the Donghe sandstone reservoir by combining the drilling materials in order to make sure its distribution law; second, to strengthen the research on velocity field, improve the accuracy of variable speed mapping, make corrections by the data from newly- drilled key wells and, as a result, the precision of tectonic description is greatly improved; third, to strengthen the research on sequence stratigraphy and make sure the distribution law of the Donghe sandstone; and fourth, with a step- by-step extrapolation method, to deepen the cognition of the leaning water-oil contact, and by combining the tectonic description and drilling results, to make sure little by little the law of change of the water-oil contact. The exploration and development of the Donghe sandstone subtle reservoir in Hade 4 oilfield is a gradually perfected process. From 1998 when it was discovered till now, the reservoir has managed to make a benign circle of exploration and development, in which its reserve has gradually been enlarged, its production scale increased, and, in a word, it has used techniques necessary for this subtle reservoir in the Tarim basin. 展开更多
关键词 Hade 4 oil field Donghe sandstone subtle reservoir seismic explanation tectonic description pinch-out line sequence stratigraphy water-oil contact
下载PDF
Genesis Types and Diagenesis Compaction Mechanisms of Sandstone Rreservoirs in Dynamic Environments in Oil/Gas Basins in China 被引量:7
4
作者 Shou Jianfeng Si Chunsong Wang Xin 《Petroleum Science》 SCIE CAS CSCD 2006年第3期23-31,共9页
The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genes... The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genesis types of thermal diagenesis, tectonic diagenesis and fluid diagenesis are presented on the basis of the dynamic environment of the oil/gas basins and.the controlling factors and mechanisms of sandstone diagenesis. Thermal diagenesis of sandstone reservoirs is related not only to the effect of formation temperature on diagenesis, but also to the significant changes in diagenesis caused by geothermal gradients. The concept of thermal compaction is presented. Thermal compaction becomes weaker with increasing depth and becomes stronger at a higher geothermal gradient. At the same formation temperature, the sandstone porosity in the region with a lower geothermal gradient is e^0.077+0.0042T times higher than that in the region with a higher geothermal gradient. Both sudden and gradual changes are observed in diagenetic evolution caused by structural deformation. Average sandstone compaction increased by 0.1051% for every 1.0MPa increase of lateral tectonic compressional stress, while late tectonic napping helped to preserve a higher porosity of underlying sandstone reservoir. Fluid diagenesis is a general phenomenon. The compaction caused by fluid properties is significant. The coarser the grain size, the stronger the fluid effect on compaction. The greater the burial depth, the weaker the fluid effect on compaction for the specific reservoir lithology and the greater the difference in the fluid effects on compaction between different grain sizes. 展开更多
关键词 oil/gas basins in China sandstone reservoir genesis types diagenesis compaction mechanism
下载PDF
Impact of surface roughness,surface charge,and temperature on sandstone wettability alteration by nanoparticles
5
作者 Bingjun Zhang Kaustubh Rane +1 位作者 Mohammad Piri Lamia Goual 《Petroleum Science》 SCIE EI CSCD 2023年第5期2852-2863,共12页
The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from ... The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from subsurface formations.In this work,the mechanism of wettability reversal of aged synthetic sandstones by metal oxide nanoparticles(SiO_(2) and Al_(2)O_(3))was investigated with particular focus on the impact of surface roughness,zeta potential,and temperature.The synthetic surfaces were prepared from powders of Berea sandstone with known grain size ranges and their average roughness and roughness ratio were obtained from the 3D surface reconstruction of their microscope images.Each surface was subsequently aged in Permian crude oil to alter its wettability.For surfaces with larger grain sizes and lower surface roughness ratios,the lower capillary pressure allowed stronger oil/surface interactions,leading to enhanced oil-wetness.The wettability alteration effects of nanoparticles were then examined through real-time top view imaging and dynamic front view contact angle experiments.The negatively charged SiO_(2) nanoparticles rapidly reversed the sandstone wettability,indicating their potential applicability as wettability alteration agents.By contrast,the positively charged Al_(2)O_(3) counterpart caused no wettability reversal.The mechanism of wettability alteration was further studied by microscale interaction analyses and nanoscale transmission electron microscopy.Because nanoparticles were only a few nanometers large,the microscale roughness had a negligible effect on the wettability reversal.Instead,the combined effect of van der Waals dispersion forces and surface-charge-induced electrostatic forces were recognized as the two key factors affecting the wettability of sandstone particles.Such interactions may be curbed at elevated temperatures due to a decrease in the zeta potential and colloidal stability of the particles. 展开更多
关键词 WETTABILITY sandstone Surface roughness NANOPARTICLE MICROSCOPE Enhanced oil recovery Contact angle Zeta potential
下载PDF
Exploration Technology for Complex Sandstone Reservoirs in the Developed Area of Shengli Oilfield 被引量:3
6
作者 Li Yang, Zhang Zonglin (Shengli Oilfield Company Ltd., SINOPEC, Shandong, Dongying 257001) 《工程科学(英文版)》 2003年第2期67-74,共8页
Jiyang depression, which is the main oil productive area of Shengli oil field, is located at the southeast part of the Bohai Bay Basin and is a terrestrial lacustrine rift subsidence basin formed in the late Mesozoic ... Jiyang depression, which is the main oil productive area of Shengli oil field, is located at the southeast part of the Bohai Bay Basin and is a terrestrial lacustrine rift subsidence basin formed in the late Mesozoic with fully developed fault system. The main hydrocarbon productive formations of this depression are the terrestrial clastic rocks of the Tertiary, which are of strong lateral variation. The complex fault reservoirs and subtle lithological reservoirs distributed extensively and are becoming the main exploration targets in recent years. The exploration and development practice in these years has formed the exploration technologies, mainly including detailed study and description of low grade faults, delineation of microstructures, facies constrained formation description and prediction and low resistivity oil bearing formation’s identification. These exploration technologies have resulted in remarkable effectiveness on the reserve and oil production increments. 展开更多
关键词 petroliferous area COMPLEX sandstone reservoir LOW grade fault microstructure FACIES constrained formation prediction LOW RESISTIVITY oil bearing formation’s identification
下载PDF
Palaeotemperatures and Diagenetic Phases of the Upper Triassic Oil-bearing Sandstones in the Eastern Part of the Ordos Basin 被引量:2
7
作者 Liu Yiqun Feng Qiao and Li Wenhou Department of Geology, Northwest University, Xi’an, Shaanxi Fei Zhenbi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第3期305-316,共12页
The maximum palaeotemperature of oil-bearing sandstones in the UpperTriassic in the eastern Ordos basin has been determined by using many methods including thevitrinite reflectance, fluid inclusion, apatite fission tr... The maximum palaeotemperature of oil-bearing sandstones in the UpperTriassic in the eastern Ordos basin has been determined by using many methods including thevitrinite reflectance, fluid inclusion, apatite fission track, illite crystallinity, chlorite polytypeand diagenetic change of authigenic minerals. The thermal gradient in the Late Mesozoic wasabout 2.9-3.0℃/100m. The Upper Triassic was in a mature stage of organic matter andhydrocarbon began to be generated and migrated during this period. The palaeotemperatures ofoil-bearing sandstones were in the range of 88-110℃; those for the generation and migrationof oil ranged from 112 to 122℃. The thickness of the denuded strata overlying the UpperTriassic was 2465-2750m. The present burial depth of oil-bearing sandstones is generally from400 to 1200m. At a depth of ca. 1900m, the temperature may reach 140℃. Below this depth,organic matter was supermature and mainly generated gas. 展开更多
关键词 palaeotemperature diagenetic phase Late Mesozoic oil-bearing sandstones Ordos basin
下载PDF
Quantitative prediction of oil saturation of unconsolidated sandstone reservoir based on time-lapse seismic “relative difference method”: Taking Zeta oil field in West Africa as an example
8
作者 LU Hongmei XU Hai +1 位作者 WO Yujin GU Ning 《Petroleum Exploration and Development》 2019年第2期426-434,共9页
In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the... In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the thickness of reservoir, a time-lapse seismic "relative difference method"(the ratio of monitoring data to base data) not affected by the thickness of reservoir but only related to the change of fluid saturation, is proposed through seismic forward modeling after fluid displacement simulation. Given the same change of fluid saturation, the absolute difference of time-lapse seismic conforms to the law of "tuning effect" and seismic reflection of "thin bed", and the remaining oil prediction method based on absolute difference of time-lapse seismic is only applicable to the reservoirs with uniform thickness smaller than the tuning thickness or with thickness greater than the tuning thickness. The relative difference of time-lapse seismic is not affected by reservoir thickness, but only related to the change of fluid saturation. It is applicable to all the deep-sea unconsolidated sandstone reservoirs which can exclude the effect of pressure, temperature, pore type and porosity on seismic. Therefore, the relation between the relative difference of time-lapse seismic and the change of fluid saturation, which is obtained from seismic forward modeling after Gassmann fluid displacement simulation, can be used to quantitatively predict the change of reservoir water saturation and then the distribution of the remaining oil. The application of this method in deep sea Zeta oil field in west Africa shows that it is reasonable and effective. 展开更多
关键词 time-lapse seismic remaining oil quantitative prediction unconsolidated sandstone reservoir fluid displacement absolute DIFFERENCE RELATIVE DIFFERENCE ZETA oil field WEST AFRICA
下载PDF
Development of High Viscous Oil in Sandstone Reserviors During the High Water Cut Stage,Gudao Oilfield
9
作者 Bi Yanpeng Li Yang and Lu Xianliang(Gudao Oil Production Company of Shengli Petroleum Administration) 《China Oil & Gas》 CAS 1994年第3期48-52,共5页
The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentl... The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentle from 30'to 1°30'in general.The main oil-bearing sequences can be divided into 6 sand groups and 34 layers in detail.in which the Ng°-Ng°sand groups are the main payzones in which oil in place accounts for 97.2%of the total. 展开更多
关键词 oil field WATER oil ratio sandstone Reservoir DEVELOPMENT
下载PDF
Numerical simulation of the dynamic migration mechanism and prediction of saturation of tight sandstone oil
10
作者 Gaohui CAO Mian LIN +2 位作者 Likuan ZHANG Lili JI Wenbin JIANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期179-195,共17页
Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geolo... Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geological elements is developed,and a nonlinear seepage numerical model for tight sandstone oil migration and accumulation is established.The effects of the slip effect,overpressure driving force,buoyancy,and capillary force on the migration and accumulation of tight oil are examined.The results showed that(1)the differences in oil migration and accumulation between tight and conventional reservoirs are reflected in the growth mode of oil saturation,distribution characteristics of oil and water,and extent of the effect of the formation dip angle;(2)the slip effect has a significant impact when the average pore throat radius is less than 150 nm and the overpressure driving force and capillary force are the main mechanical mechanisms controlling oil migration and accumulation in tight sandstone,while the coupling effect of buoyancy,capillary force,and overpressure driving force controls the upper and lower limits of oil saturation.Finally,a dimensional and dimensionless identification chart for rapidly predicting the oil saturation of tight sandstone is proposed and verified using the measured data.This study provides a basis for analyzing the migration and accumulation mechanisms of tight sandstone oil and a new approach for predicting oil saturation.Additionally,we developed digital and visual analysis methods for the migration results,enriching the expression of the dynamics of hydrocarbon accumulation. 展开更多
关键词 Tight sandstone Migration and accumulation DYNAMICS oil saturation Numerical simulation
原文传递
Characteristics and Genesis of the Es_(1) Productive Sandstone Reservoir(Paleogene),Nanpu Sag,East China 被引量:1
11
作者 Kashif MUHAMMAD CAO Yingchang +7 位作者 Ahsan NAVEED Asif MUHAMMAD YUAN Guanghui XI Kelai ZHANG Shaomin XU Qisong MUsman TAHIR Isgandarov ORKHAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期909-927,共19页
The Shahejie Formation is a fundamental rock unit for hydrocarbon exploration and production in the Nanpu Sag,Bohai Bay Basin.Methodology including thin sectioning,core observations,fluorescence,scanning electron micr... The Shahejie Formation is a fundamental rock unit for hydrocarbon exploration and production in the Nanpu Sag,Bohai Bay Basin.Methodology including thin sectioning,core observations,fluorescence,scanning electron microscopy,cathodoluminescence,fluid inclusion,laser scanning confocal microscopy and geochemical analysis(C,O isotopes)were all utilized to investigate the reservoir characteristics and origin of the Es_(1)Sandstone.Thin section study showed that the reservoir rock consisted of feldspathic litharenite and lithic arkose.The reservoir pores are categorized as intergranular pores,fracture pores,dissolution pores and intergranular cement dissolution pores.The studied sandstone had good porosity(0.05%–35%)and permeability(0.006–7000 mD).The Es_(1) reservoir is classified as a fractured reservoir,a primary intergranular pore-associated reservoir and a dissolution reservoir.Deposition,diagenesis and tectogenesis are the main factors that played important roles in the development of the reservoir.Sedimentation is the foundation and assumption for reservoir development,but the effective reservoir is primarily controlled by primary pores,fractures,lithofacies,tectonic elements and dissolution pores.Moreover,compaction,fracture filling and cementation were the primary sources of reservoir densification.The reservoir was progressively formed through the influence of different geological and diagenetic events.The present study provides significant information and references for hydrocarbon exploration and development in the Nanpu Sag. 展开更多
关键词 POROSITY Eocene sandstone Es1 reservoir Nanpu oil field
下载PDF
Imbibition characteristics of sandstone cores with different permeabilities in nanofluids
12
作者 QIU Rundong GU Chunyuan +2 位作者 XUE Peiyu XU Dongxing GU Ming 《Petroleum Exploration and Development》 CSCD 2022年第2期374-381,共8页
The core imbibition and shifting nuclear magnetic resonance(NMR) imaging experiment has loss of surface oil phase and air adsorption, which will affect the accuracy of the experiment result. To solve this issue, a mod... The core imbibition and shifting nuclear magnetic resonance(NMR) imaging experiment has loss of surface oil phase and air adsorption, which will affect the accuracy of the experiment result. To solve this issue, a modified experiment method, in-situ imbibition NMR method has been worked out. This method was used to carry out sandstone core imbibition experiment in nanofluid, and the oil migration images in the entire process were recorded. In combination with physical properties of the sandstone cores and the variations of the driving force during the imbibition process, imbibition characteristics of the sandstone cores with different permeabilities in nanofluid were analyzed. The results show that: the nanofluid can greatly reduce the interfacial tension of oil phase and improve the efficiency of imbibition and oil discharge, the higher the concentration, the lower the interfacial tension and the higher the efficiency of imbibition and oil discharge would be, but when the concentration reaches a certain value, the increase in imbibition and oil discharge efficiency slows down;the rise of temperature can reduce the oil viscosity resistance and interfacial tension, and hence enhance the imbibition and oil discharge rate;when the sandstone core is higher in permeability, the bottom crude oil would migrate upward and discharge during the imbibition, the higher the permeability of the sandstone core, the more obvious this phenomenon would be, and the phenomenon is shown as top oil discharge characteristic;when the sandstone core is low in permeability, the crude oil in the outer layer of the sandstone core would discharge first during the imbibition, then crude oil in the inside of the core would disperse outside and discharge, which is shown as oil discharge characteristic around the core;but under long time effect of nanofluid, the core would become more and more water-wet and reduce in the oil-water interfacial tension, so would have top oil discharge characteristic in the later stage of imbibition. 展开更多
关键词 NANOFLUID sandstone cores nuclear magnetic resonance imaging imbibition characteristics oil discharge efficiency
下载PDF
A Novel Simulation Framework for Predicting the Formation Parameters Variation in Unconsolidated Sandstone Reservoir
13
作者 Hongying Li Wei Zhang +2 位作者 Bin Liu Xinran Wang Xilin Liu 《Journal of Geoscience and Environment Protection》 2019年第7期172-183,共12页
After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield developme... After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield development effect. The current researches on the formation parameters variation are mainly based on the experiment analysis or field statistics, while lacking quantitative research of combining microcosmic and macroscopic mechanism. A network model was built after taking the detachment and entrapment mechanisms of particles in unconsolidated sandstone reservoir into consideration. Then a coupled mathematical model for the formation parameters variation was established based on the network modeling and the model of fluids flowing in porous media. The model was solved by a finite-difference method and the Gauss-Seidel iterative technique. A novel field-scale reservoir numerical simulator was written in Fortran 90 and it can be used to predict 1) the evolvement of high-permeability channels caused by particles release and migration in the long-term water flooding process, and 2) well production performances and remaining oil distribution. In addition, a series of oil field examples with inverted nine-spot pattern was made on the new numerical simulator. The results show that the high-permeability channels are more likely to develop along the main streamlines between the injection and production wells, and the formation parameters variation has an obvious influence on the remaining oil distribution. 展开更多
关键词 Formation Parameters VARIATION Network Modeling Numerical Simulation High-Permeability CHANNELS REMAINING oil Distribution Unconsolidated sandstone RESERVOIR
下载PDF
4D-stress evolution of tight sandstone reservoir during horizontal wells injection and production: A case study of Yuan 284 block,Ordos Basin,NW China
14
作者 ZHU Haiyan SONG Yujia +1 位作者 LEI Zhengdong TANG Xuanhe 《Petroleum Exploration and Development》 CSCD 2022年第1期156-169,共14页
To investigate the 4D stress change during injection and production in tight sandstone reservoirs, a multi-physical fields modeling method is proposed considering the reservoir heterogeneity, hydraulic fracture and co... To investigate the 4D stress change during injection and production in tight sandstone reservoirs, a multi-physical fields modeling method is proposed considering the reservoir heterogeneity, hydraulic fracture and complex injection-production system. The 4D stress evolution of tight sandstone reservoir in Yuan 284 block of Huaqing oilfield, Ordos Basin,during injection-production in horizontal well network is investigated by modeling coupled flow and geomechanics. Results show:(1) Induced by injection and production, the 3D stress increases near the injectors but decreases near the producers, and the horizontal stresses are distributed in obvious strips along their respective stress directions.(2) The horizontal stress difference is the highest at the horizontal wellbore beside injectors during injection and production, while it is the lowest in undeveloped zone between the injectors, and the orientation of maximum horizontal principal stress changes the most near the injectors, which is distributed radially.(3) The hydraulic fracture in re-fracturing well was observed to be asymmetrical in geometry and deflected as the stress changed. The results provide theoretical guidance for horizantal well network modification and re-fracturing optimization design in tight sandstone reservoir. 展开更多
关键词 tight oil tight sandstone reservoir injection-production well network stress evolution flow and geomechanical coupling Ordos Basin
下载PDF
Nuclear magnetic resonance study of the formation and dissociation process of nature gas hydrate in sandstone
15
作者 Dong-hui Xing Xu-wen Qin +5 位作者 Hai-jun Qiu Hong-feng Lu Yi-ren Fan Xin-min Ge Cheng Lu Jin-wen Du 《China Geology》 CAS 2022年第4期630-636,共7页
In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.... In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.The result shows that the intensity of T_(2) spectra and magnetic resonance imaging(MRI)signals gradually decreases in the hydrate formation process,and at the same time,the T_(2) spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate.The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity.Significantly,for the sample with lower porosity and higher argillaceous content,the intensity of the T_(2) spectra also shows a trend of a great decrease in the hydrate formation process,which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content.The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores. 展开更多
关键词 Nature gas hydrates(NGHs) Methane hydrate Nuclear magnetic resonance(NMR) Magnetic resonance imaging(MRI) Formation and dissociation Saturation Berea sandstone Marine hydrates production test oil and gas exploration engineering
下载PDF
致密储层压驱焖井阶段渗吸机理分子模拟研究
16
作者 王凤娇 孟详昊 +2 位作者 刘义坤 徐贺 胡超洋 《力学学报》 EI CAS CSCD 北大核心 2024年第6期1624-1634,共11页
针对致密储层开发中存在的天然地层能量衰减快、驱替相有效波及体积不足等难题,考虑将压驱与焖井相结合的高效开发技术应用于致密储层.基于分子动力学方法从微观作用力角度分析致密储层压驱渗吸机理,进行致密储层压驱过程溶质动态迁移表... 针对致密储层开发中存在的天然地层能量衰减快、驱替相有效波及体积不足等难题,考虑将压驱与焖井相结合的高效开发技术应用于致密储层.基于分子动力学方法从微观作用力角度分析致密储层压驱渗吸机理,进行致密储层压驱过程溶质动态迁移表征,并从分子尺度对渗吸阶段进行划分.采用分子模拟方法,构建致密储层壁面-油相-驱替相三相体系,分别从体系弛豫特征、浓度分布及扩散能力和介质间相互作用能等方面分析常规水力压裂后常压驱替条件和压驱高压条件渗吸过程特征性差异,从分子尺度阐释致密储层压驱渗吸机理.研究表明:相对于常规压裂后驱替而言,压驱条件下,驱替相分子扩散系数提高20.06%,与孔隙壁面的相互作用能提高2.3倍;驱替相分子吸附层数增加,油相解吸效果更为明显,渗吸换油效率提高38.73%.此外,渗吸效率随储层温度变化的过程存在峰值,具有先上升后降低的特征;且受到壁面润湿性的影响,壁面亲水性越强渗吸效率越高.从分子尺度将焖井渗吸过程划分为3个阶段:水分子优先靠近壁面;驱替相流体与油相分子竞争吸附,将吸附态油相剥离为游离态,使其远离壁面;压驱液溶质分子进入初始油相范围,进一步置换油相,提高渗吸效率.压驱技术高压注入压驱剂可快速补充地层能量,扩大驱替相流体波及体积并提高洗油效率,在二者的协同作用下可大幅度提高渗吸驱油效率.该项研究可为致密储层高效开发提供理论参考. 展开更多
关键词 致密储层 压驱技术 焖井 渗吸机理 分子动力学
下载PDF
高倍数水驱砂岩中原油黏度、岩心润湿性时变规律核磁共振实验
17
作者 贾虎 张瑞 +2 位作者 罗宪波 周子力 杨璐 《石油勘探与开发》 EI CAS CSCD 北大核心 2024年第2期348-355,共8页
根据模拟原油黏度与横向弛豫时间谱几何平均值的变化关系,建立了模拟原油黏度预测模型,并结合高倍数水驱核磁共振(NMR)实验实现了孔隙介质中模拟原油黏度的时变规律定量表征;基于核磁共振弛豫理论推导出新的NMR润湿性指数计算公式,结合... 根据模拟原油黏度与横向弛豫时间谱几何平均值的变化关系,建立了模拟原油黏度预测模型,并结合高倍数水驱核磁共振(NMR)实验实现了孔隙介质中模拟原油黏度的时变规律定量表征;基于核磁共振弛豫理论推导出新的NMR润湿性指数计算公式,结合砂岩岩心高倍数水驱实验,定量表征了水驱过程岩石润湿性的时变规律。研究表明:岩心中剩余油黏度与过水倍数正相关,过水倍数较低时剩余油黏度升高速度较快,过水倍数较高时剩余油黏度升高速度趋缓。剩余油黏度的变化与储层非均质性相关,储层均质性越强,剩余油中重质组分含量越高,黏度越高。注水后储层润湿性将发生改变,亲油储层向亲水储层转变,亲水储层则亲水性更强,且改变程度随过水倍数增加而增强。原油黏度的时变性与润湿性的时变性具有很高的关联性,原油的黏度变化不可忽略,考虑模拟原油黏度变化时计算得到NMR润湿性指数与测试Amott(自吸法)润湿性指数更具有一致性,更加符合储层润湿性时变规律。 展开更多
关键词 砂岩 高倍数水驱 核磁共振 原油黏度 岩石润湿性 时变规律
下载PDF
低渗砂岩油田CO_(2)驱化学机理及提高采收率研究
18
作者 吴向阳 李建勋 +2 位作者 李刚 梅艳 金戈 《当代化工》 CAS 2024年第2期362-365,371,共5页
针对低渗砂岩油藏进行了CO_(2)驱开发技术研究,分析了CO_(2)驱油化学机理及主要影响因素。基于目标油藏流体特征进行了PVT拟合,确定其CO_(2)驱最小混相压力,明确了不同压力及注入时机对CO_(2)驱采收率、气油比、含水率及驱动压差等的影... 针对低渗砂岩油藏进行了CO_(2)驱开发技术研究,分析了CO_(2)驱油化学机理及主要影响因素。基于目标油藏流体特征进行了PVT拟合,确定其CO_(2)驱最小混相压力,明确了不同压力及注入时机对CO_(2)驱采收率、气油比、含水率及驱动压差等的影响规律,探究了CO_(2)泡沫驱在提高采收率方面的效用。结果表明:24.5 MPa为目标区域CO_(2)驱的最小混相压力,采收率会随着压力的升高而增加,28 MPa时CO_(2)驱提高采收率可达30.57%。气体突破时间、总采收率与CO_(2)注入时机密切相关,CO_(2)注入越早,越有利于采收率的提高,出口含水率为60%时注入可提高采收率39.13%。CO_(2)泡沫驱可以在一定程度上起到提高采收率的效用。 展开更多
关键词 低渗砂岩油藏 CO_(2)驱 注入时机 提高采收率
下载PDF
三塘湖盆地油气勘探历程与启示
19
作者 刘俊田 谢佃和 +3 位作者 刘源 陈建国 贾国强 王波 《石油地质与工程》 CAS 2024年第4期1-10,共10页
三塘湖盆地油气勘探始于20世纪50年代,50—80年代基本以地面地质调查和局部勘探为主,大规模油气勘探始于90年代并取得了丰硕成果。回顾六十多年的油气勘探实践,系统梳理了三塘湖盆地石油地质研究与认识、勘探领域及勘探成果,基于钻井、... 三塘湖盆地油气勘探始于20世纪50年代,50—80年代基本以地面地质调查和局部勘探为主,大规模油气勘探始于90年代并取得了丰硕成果。回顾六十多年的油气勘探实践,系统梳理了三塘湖盆地石油地质研究与认识、勘探领域及勘探成果,基于钻井、地震、储量及产量等数据分析,将三塘湖盆地油气勘探历程划分为地质普查、砂岩油藏勘探、火山岩油藏勘探、致密油勘探4个阶段。以油气勘探各阶段勘探思路、科技创新、勘探技术、重大勘探成果为主线,系统总结了各个阶段的勘探启示以及对勘探产生重要影响的成果及认识,形成了侏罗系低渗低压砂岩油藏、火山岩油藏和凝灰岩致密油藏的成藏地质理论和勘探开发技术,有效推动了三塘湖盆地油气勘探的持续突破,同时期望指导三塘湖盆地下一步油气勘探工作。 展开更多
关键词 三塘湖盆地 低渗砂岩油藏 火山岩油藏 致密油 勘探历程 勘探启示
下载PDF
Y油田低渗透油藏高含水阶段提高采收率研究 被引量:3
20
作者 徐培富 辛显康 +4 位作者 喻高明 倪明成 龚玉刚 赵梦楠 雷泽萱 《当代化工》 CAS 2024年第1期141-147,共7页
低渗透砂岩油藏储量丰富,约占全国储量的2/3以上,开发潜力巨大。该类油藏具有孔渗条件差、储层非均质性强、吸水能力差等特点,开发后期油藏进入高含水阶段,存在水驱效果差、开发难度大、采收率较低等问题,因此亟需探究提高采收率的有效... 低渗透砂岩油藏储量丰富,约占全国储量的2/3以上,开发潜力巨大。该类油藏具有孔渗条件差、储层非均质性强、吸水能力差等特点,开发后期油藏进入高含水阶段,存在水驱效果差、开发难度大、采收率较低等问题,因此亟需探究提高采收率的有效手段。以Y油田低渗透油藏为例,在地质模型和精细油藏描述的基础上,通过生产动态分析和剩余油表征,针对全区水驱储量控制程度低、油井含水高、注采井网不完善的问题,提出了精细注水、注气和水气交替等措施。通过数值模拟方法,对比不同措施的开发效果,优选最佳方案,预测实施调整方案15年后,全区采收率提高12%。该研究成果可为低渗透砂岩油藏高含水期的高效开发提供参考依据和借鉴。 展开更多
关键词 低渗透砂岩油藏 精细油藏描述 剩余油表征 数值模拟 方案优化
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部