期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields 被引量:8
1
作者 M.MOHAMMADIMEHR R.ROSTAMI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期219-240,共22页
The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the fir... The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young's modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage. 展开更多
关键词 free vibration BENDING rotating sandwich cylindrical shell nanocompositecore piezoelectric layer
下载PDF
Critical velocity of sandwich cylindrical shell under moving internal pressure 被引量:1
2
作者 周加喜 邓子辰 侯秀慧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1569-1578,共10页
Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich... Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical velocity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are presented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number k is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when k is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction. 展开更多
关键词 sandwich cylindrical shell critical velocity ELASTODYNAMICS Legendre polynomial
下载PDF
Mechanical property of cylindrical sandwich shell with gradient core of entangled wire mesh
3
作者 Xin Xue Chao Zheng +1 位作者 Fu-qiang Lai Xue-qian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期510-522,共13页
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed... To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation. 展开更多
关键词 Entangled wire mesh Gradient cylindrical sandwich shell Vacuum brazing Secant stiffness Damping
下载PDF
A comparative study on mechanical and vibroacoustic performance of sandwich cylindrical shells with positive,negative,and zero Poisson’s ratio cellular cores
4
作者 Qing Li Peichang Li +1 位作者 Yongjin Guo Xi’an Liu 《Journal of Ocean Engineering and Science》 SCIE 2024年第4期379-390,共12页
Deep-sea submersibles are significant mobile platforms requiring multi-functional capabilities that are strongly determined by the constituent materials.Their cylindrical protective cover can be advanced by designing ... Deep-sea submersibles are significant mobile platforms requiring multi-functional capabilities that are strongly determined by the constituent materials.Their cylindrical protective cover can be advanced by designing their sandwiched cellular materials whose physical properties can be readily parameterized and flexibly tuned.Porous honeycomb materials are capable of possessing tuned positive,negative,or zero Poisson’s ratios(PPR,NPR,and ZPR),which is expected to produce distinct physical performance when utilized as a cellular core of cylindrical shells for the deep-sea submersibles.A novel cylindrical meta-structure sandwiched with the semi-re-entrant ZPR metamaterial has been designed as well as its similarly-shaped sandwich cylindrical shell structures with PPR and NPR honeycombs.The mechanical and vibroacoustic performance of sandwich cylindrical shells with cellular materials featuring a full characteristic range of Poisson’s ratios are then compared systematically to explore their potential for engineering applications on submerged pressure-resistant structures.The respective unit cells are designed to feature an equivalent load-bearing capability.Physical properties of pressure resistance,buckling,and sound insulation are simulated,respectively,and the orders of each property are then generalized by systematic comparison.The results indicate that the PPR honeycomb core takes advantage of higher structural strength and stability while the ZPR one yields better energy absorption and sound insulation behavior.The NPR one yields moderate properties and has the potential for lower circumferential deformation.The work explores the application of cellular materials with varied Poisson’s ratios and provides guidance for the multi-functional design of sandwich cylindrical meta-structures. 展开更多
关键词 sandwich cylindrical shells Poisson’s ratio Pressure-resistant Buckling Vibroacoustic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部