期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
Ballistic performances of the hourglass lattice sandwich structures under high-velocity fragments
1
作者 He-xiang Wu Jia Qu Lin-zhi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期312-325,共14页
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc... In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances. 展开更多
关键词 Hourglass lattice sandwich structures Ballistic performances high-velocity Finite element analysis
下载PDF
Sandwich structures with tapered tubes as core:A quasi-static investigation
2
作者 Xinmei Xiang Dehua Shao +5 位作者 Xin Zhang Umer Sharif Ngoc San Ha Li Xiang Jing Zhang Jiang Yi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期447-462,共16页
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c... In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10. 展开更多
关键词 sandwich structure Corrugated tube Tapered tube QUASI-STATIC Energy absorption
下载PDF
Damage in hybrid corrugated core sandwich structures under high velocity hail ice impact:A numerical study
3
作者 Chao Zhang Xin Fang +2 位作者 Jose L.Curiel-Sosa Tinh Quoc Bui Chunjian Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期217-236,共20页
Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic resp... Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed. 展开更多
关键词 sandwich structure Hail ice impact Damage behavior Energy absorption FE-SPH modeling
下载PDF
Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact
4
作者 Nikhil Khaire Gaurav Tiwari +1 位作者 Vivek Patel M.A.Iqbal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期56-73,共18页
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu... In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions. 展开更多
关键词 Honeycomb sandwich structure Offset impact Energy dissipation characteristic Deformation and failure mode Geometry effect
下载PDF
An Optimum Analysis Method of Sandwich Structures Made from Elastic-viscoelastic Materials
5
作者 陈应波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期76-78,共3页
Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,a... Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well. 展开更多
关键词 optimum analysis viscoelastic materials sandwich structures complex modulus model loss factor
下载PDF
Delamination Testing of AlSi10Mg Sandwich Structures with Pyramidal Lattice Truss Core made by Laser Powder Bed Fusion
6
作者 M.Nuño J.Bühring +1 位作者 M.N.Rao K.-U.Schröder 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期51-62,共12页
Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed.... Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed.Most common manufacturing methods of sandwich structures involve adhesive bonding of the core material with the sheets.However,adhesive bonding is prone to delamination,a failure mode that is often difficult to detect.This paper presents the results of delamination testing of fully additive manufactured(AM)AlSi10Mg sandwich structures with pyramidal lattice truss core using Laser Powder Bed Fusion(LPBF).The faces and struts are 0.5 mm thick,while the core is 2 mm thick.The inclination of the struts is 45°.To characterise the bonding strength,climbing drum peel tests and out-of-plane tensile tests are performed.Analytical formulas are derived to predict the expected failure loads and modes.The analytics and tests are supported by finite element(FE)calculations.From the analytic approach,design guidelines to avoid delamination in AM sandwich structures are derived.The study presents a critical face sheet thickness to strut diameter ratio for which the structure can delaminate.This ratio is mainly influenced by the inclination of the struts.The peel tests resulted in face yielding,which can also be inferred from the analytics and numerics.The out-of-plane tensile tests didn’t damage the structure. 展开更多
关键词 Additive Manufacturing sandwich structures Pyramidal Lattice Core
下载PDF
High Temperature Effect on Absorption Coefficient of M-MPPs and Sandwich Structures Coupled with MPPs
7
作者 Daliwa Joseph Bainamndi Emmanuel Siryabe +1 位作者 Serge Yamigno Doka Guy Edgar Ntamack 《Open Journal of Acoustics》 2020年第1期1-18,共18页
This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a freque... This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a frequency range from 10 to 3000 Hz. The structure is backed with a rigid wall which can either be Aluminium or Al-Alloy used in aeronautic or automobile. The wave propagation in porous media is addressed using Johnson Champoux Allard model (JCA). The FEM model developed using COMSOL Multiphysics software makes it possible to predict the acoustic absorption coefficient in multilayer microperforated panels (M-MPPs) and sandwich structure. It is shown that, when structures made by MPPs or sandwich materials are submitted to high temperature, the absorption performance of the structure is strongly modified in terms of amplitude and width of the bandgap. For application in sever environment (noise reduction in engines aircrafts), Temperature is one of the parameters that will most influence the absorption performance of the structure. However, for application in the temperature domain smaller than 50?C (automotive applications for example), the effect of temperature is not significant on absorption performance of the structure. 展开更多
关键词 Absorption Coefficient Finite Element Model Microperforated Plates Poroelastic Core sandwich structures
下载PDF
Prediction of Compressive and Shear Moduli of X-cor Sandwich Structures for Aeronautic Engineering 被引量:1
8
作者 张向阳 李勇 +3 位作者 李俊斐 范琳 谭永刚 肖军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期646-653,共8页
The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,th... The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,the gap is still hardly bridged between experimental results and theoretical analyses.Therefore,a method has been innovated to establish semi-empirical formula for the prediction of compressive and shear moduli of X-cor sandwich structure composites,by combining theoretical analyses and experimental data.In addition,aprediction software was first developed based on the proposed method,of which the accuracy was verified through confirmatory experiments.This software can offer a direct reference or guide for engineers in structural designing. 展开更多
关键词 X-cor sandwich structure moduli prediction COMPRESSIVE SHEAR
下载PDF
Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composite Sandwich Structures with Multiscale Cellular Cores
9
作者 Zhenhu Wang Yaohui Wang +4 位作者 Jian He Ke Dong Guoquan Zhang Wenhao Li Yi Xiong 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第3期39-45,共7页
The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and... The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and mold pressing,require multiple steps and complex tools,thus limiting the exploration of advanced sandwich structure designs.This study reports a novel multi-material additive manufacturing(AM)process that allows the single-step production of continuous fiber-reinforced polymer composite(CFRPC)sandwich structures with multiscale cellular cores.Specifically,the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs.The cellular core design spans three levels:microcellular,unit-cell,and graded structures.Sandwich structures with a diverse set of unit-cell designs,that is,rhombus,square,honeycomb,and re-entrant honeycomb,were fabricated and their flexural behaviors were studied experimentally.The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness,strength,and specific energy absorption.In addition,the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined.The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches. 展开更多
关键词 Additive manufacturing sandwich structures Continuous fiber-reinforced composites Foam materials
原文传递
Cushioning Performance of Hilbert Fractal Sandwich Packaging Structures under Quasi-Static Compressions
10
作者 Xingye Xu Haiyan Song Lijun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期275-292,共18页
The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich str... The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich structure was designed.The generation mechanism and recurrence formula of theHilbert fractal were expressed by Lin’s language,and the second-orderHilbert sandwich structure was constructed fromthermoplastic polyurethane.The constitutive model of the hyperelastic body was established by using the finite element method.With the unit mass energy absorption as the optimization goal,the fractal sandwich structure was optimized,and the best result was obtained when the order was 2.5 and the unit layer thickness was 0.75 mm.TheHilbert sandwich structure was compared with the rice-shaped sandwich structure commonly used in industry,and the Hilbert fractal structure had better energy absorption.This has practical significance for the development and application of newcushioning packaging structures. 展开更多
关键词 Hilbert fractal sandwich structure static compression buffer packaging
下载PDF
Lignin‐derived carbon with pyridine N‐B doping and a nanosandwich structure for high and stable lithium storage
11
作者 Dichao Wu Jiayuan Li +5 位作者 Yuying Zhao Ao Wang Gaoyue Zhang Jianchun Jiang Mengmeng Fan Kang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期232-247,共16页
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ... Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+)diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−)and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1)at 0.05 A g^(−1)and superior stability(96.5%retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+)and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+)migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices. 展开更多
关键词 high cycling stability high energy density lithium‐ion batteries pyridinic N‐B species sandwich structure carbon nanosheet
下载PDF
Mechanical Response of All-composite Pyramidal Lattice Truss Core Sandwich Structures 被引量:11
12
作者 Ming Li Linzhi Wu +2 位作者 Li Ma Bing Wang Zhengxi Guan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第6期570-576,共7页
The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding ... The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234.The out-of-plane compression and shear tests were conducted.Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures.Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures. 展开更多
关键词 sandwich structures Pyramidal truss COMPOSITE Mechanical properties
原文传递
Mechanical characteristics of composite honeycomb sandwichstructures under oblique impact
13
作者 Yuechen Duan Zhen Cui +3 位作者 Xin Xie Ying Tie Ting Zou Tingting Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期359-370,共12页
Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique ... Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique impact are studied by numerical simulation and experiment.The oblique impact model is established,and the reliability of the model is verified by the oblique impact test.To further analyze the influence of structural parameters on energy absorption under oblique impact,the influence of impact angle,face sheet thickness and wall thickness of the honeycomb is numerically studied.The results show that the impact angle has an important effect on energy distribution.The structural parameters also have an effect on the peak contact force,contact time,and energy absorption,and the effect is different from normal impact due to the presence of frictional dissipation energy.Compared with normal impact,the debonding of oblique impact will be reduced,but the buckling range of the honeycomb core will be expanded. 展开更多
关键词 Composite sandwich structures HONEYCOMB Oblique impact Mechanical characteristics Energy absorption
下载PDF
DECAY RATE OF SAINT-VENANT END EFFECTS FOR PLANE DEFORMATIONS OF PIEZOELECTRIC-PIEZOMAGNETIC SANDWICH STRUCTURES 被引量:2
14
作者 Yan Xue Jinxi Liu 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第5期407-419,共13页
This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures, where a PM layer is located between two PE layers with the sa... This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures, where a PM layer is located between two PE layers with the same material properties or reversely. The end of the sandwich structure is subjected to a set of self-equilibrated magneto-electro-elastic loads. The upper and lower surfaces of the sandwich structure axe mechanically free, electrically open or shorted as well as magnetically open or shorted. Firstly the constitutive equations of PE mate- rials and PM materials for plane strain are given and normalized. Secondly, the simplified state space approach is employed to arrange the constitutive equations into differential equations in a matrix form. Finally, by using the transfer matrix method, the characteristic equations for eigen- values or decay rates axe derived. Based on the obtained characteristic equations, the decay rates for the PE-PM-PE and PM-PE-PM sandwich structures are calculated. The influences of the electromagnetic boundary conditions, material properties of PE layers and volume fraction on the decay rates are discussed in detail. 展开更多
关键词 Saint-Venant's principle decay rate end effect piezoelectric material piezomag- netic material sandwich structure plane deformation
原文传递
Discussion on "sandwich"structures and preservation conditions of shale gas in the South Yellow Sea Basin 被引量:1
15
作者 Jian-qiang Wang Jian-ming Gong +5 位作者 Li Zhang Hai-yan Cheng Jing Liao Jian-wen Chen Jing Su Chuan-sheng Yang 《China Geology》 2018年第4期485-492,共8页
In order to make a breakthrough in Mesozoic-Paleozoic shale gas exploration in the South Yellow Sea Basin,a comparison of the preservation conditions was made within the Barnett shale gas reservoirs in the Fortworth B... In order to make a breakthrough in Mesozoic-Paleozoic shale gas exploration in the South Yellow Sea Basin,a comparison of the preservation conditions was made within the Barnett shale gas reservoirs in the Fortworth Basin,the Jiaoshiba shale gas reservoirs in Sichuan Basin and potential shale gas reservoirs in Guizhou Province.The results show that the "Sandwich"structure is of great importance for shale gas accumulation.Therein to,the "Sandwich"structure is a kind of special reservoir-cap rock assemblage which consist of limestone or dolomite on the top,mudstone or shale layer in the middle and limestone or dolomite at the bottom.In consideration of the Mesozoic-Paleozoie in the Lower Yangtze,and Laoshan Uplift with weak Paleozoic deformation and thrust fault sealing On both flanks of the Laoshan Uplift,a conclusion can be drawn that the preservation conditions of shale gas probably developed "Sandwich" structures in the Lower Cambrian and Permian,which are key layers for the breakthrough of shale gas in the South Yellow Sea.Moreover,the preferred targets for shale gas drilling probably locate at both flanks of the Laoshan Uplift. 展开更多
关键词 "sandwich"structure PRESERVATION CONDITIONS SHALE gas Laoshan UPLIFT SOUTH YELLOW Sea
下载PDF
Enhanced design of hourglass truss sandwich structures for compressive resistance
16
作者 FENG LiJia YU GuoCai +2 位作者 MA Li WU LinZhi ZHANG AMan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第12期2717-2728,共12页
In this article,the design of the hourglass truss sandwich structure is improved by optimizing the number of layers to enhance the compressive strength of both the core and the face sheet and then its mechanical perfo... In this article,the design of the hourglass truss sandwich structure is improved by optimizing the number of layers to enhance the compressive strength of both the core and the face sheet and then its mechanical performance. The hourglass truss structures characterized by three different numbers of layers are manufactured using an interlocking and vacuum brazing method. The effect of the layer number of the hourglass core panels on their out-of-plane compression and in-plane compression performance is investigated,and the results from calculations and experiments are in reasonable agreement. The results show that as the layer number of the hourglass core increases,the out-of-plane compressive strengths show little change,but their energy absorption properties are effectively increased. The in-plane compressive failure mechanism maps are constructed,and the specimens are designed to examine the local elastic and inelastic buckling failure modes of the face sheets. The results suggest that as the number of layers of the hourglass core increases,its maximum in-plane compressive load increases. The maximum in-plane compressive loads of the two-layer hourglass truss panels are 57%–70% higher than those of the single-layer panels. It can also be concluded that the out-of-plane and in-plane compression mechanical properties of the multilayer hourglass truss outperform those of the pyramidal truss. Furthermore,the number of layers of the hourglass core is optimized in consideration of both mechanical properties and fabrication cost. 展开更多
关键词 MULTILAYER hourglass truss truss sandwich structure out-of-plane compression in-plane compression
原文传递
Binary molten salt in situ synthesis of sandwich-structure hybrids of hollowβ-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction
17
作者 Tianyu Gong Yang Liu +6 位作者 Kai Cui Jiali Xu Linrui Hou Haowen Xu Ruochen Liu Jianlin Deng Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期111-124,共14页
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water... Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution. 展开更多
关键词 binary molten-salt synthesis hydrogen evolution reaction Mo2C hollow nanotubes N-doped carbon nanosheets sandwich structure
下载PDF
ON RESIDUAL COMPRESSIVE STRENGTH PREDICTION OF COMPOSITE SANDWICH PANELS AFTER LOW-VELOCITY IMPACT DAMAGE 被引量:3
18
作者 Xie Zonghong Anthony J. Vizzini Tang Qingru 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期9-17,共9页
This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage mode... This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage modes due to the impact, including the residual indentation on the impacted facesheet, the initially crushed core under the impacted area, and the delamination are incorporated into the model. A consequential core crushing mechanism is incorporated into the analysis by using an element deactivation technique. Damage propagation behavior, which corresponds to those observed in sandwich compression after impact (SCAI) tests, has been successfully captured in the numerical simulation. The critical far field stress corresponding to the onset of damage propagation at specified critical locations near the damage zone are captured successfully. They show a good correlation with experimental data. These values can be used to effectively predict the residual compressive strength of low-velocity impact damaged composite sandwich panels. 展开更多
关键词 sandwich structures impact DELAMINATION damage growth honeycomb core finite element method
下载PDF
Buckling of carbon fiber composite pyramidal truss core sandwich columns 被引量:1
19
作者 娄佳 王兵 +1 位作者 马力 吴林志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第6期34-41,共8页
This paper deals with the theoretical prediction of global buckling loads for carbon fiber composite pyramidal truss core sandwich columns. Different from thin plate structures, transverse shear effect can not be negl... This paper deals with the theoretical prediction of global buckling loads for carbon fiber composite pyramidal truss core sandwich columns. Different from thin plate structures, transverse shear effect can not be neglected for sandwich structures. In addition, the attributes of the laminated face sheets are considered in the present paper. A zig-zag displacement approximation is made. Based on the principle of minimum potential en- ergy, equilibrium equations and boundary conditions are derived via the variational method. The critical buck- ling loads under various boundary conditions are presented. In order to validate the reasonableness of the equiv- alent-core method, the strain energies stored in the actual discrete truss members and the equivalent continuous homogenous core layer are calculated respectively and compared, and a good agreement is obtained. The pro- posed analytical method is verified by comparing with the published theoretical predictions and experimental re- suhs. 展开更多
关键词 composites sandwich structures BUCKLING
下载PDF
Design and implementation of the monochromator shielding for the cold neutron spectrometers XINGZHI and BOYA
20
作者 汪晋辰 刘娟娟 +6 位作者 徐大业 Florian Grünauer 郝丽杰 刘蕴韬 张红霞 程鹏 鲍威 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期96-102,共7页
An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulatio... An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulations and careful mechanical designs,a shielding configuration has been successfully developed to satisfy safety requirements of below 3μSv/h dose rate at its exterior,meanwhile fulfilling space,floor load and nonmagnetic requirements.Composite materials are utilized to form the sandwich-type shielding walls:the inner layer of boron carbide rubber,the middle layer of steel-encased lead and the outer layer of borated polyethylene.Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage.Our work has demonstrated that by utilizing composite shielding materials,along with the sandwich structure and liftable shielding blocks,a compact and lightweight shielding solution can be achieved.This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement,larger energy and momentum coverage,and higher flux on the sample.This shielding represents the first of its kind in neutron scattering instruments in China.Following its successful operation,it has been subsequently employed by other neutron instruments across the country. 展开更多
关键词 neutron scattering cold neutron spectrometer monochromator shielding sandwich shielding structure
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部