In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc...In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,a...Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well.展开更多
Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed....Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed.Most common manufacturing methods of sandwich structures involve adhesive bonding of the core material with the sheets.However,adhesive bonding is prone to delamination,a failure mode that is often difficult to detect.This paper presents the results of delamination testing of fully additive manufactured(AM)AlSi10Mg sandwich structures with pyramidal lattice truss core using Laser Powder Bed Fusion(LPBF).The faces and struts are 0.5 mm thick,while the core is 2 mm thick.The inclination of the struts is 45°.To characterise the bonding strength,climbing drum peel tests and out-of-plane tensile tests are performed.Analytical formulas are derived to predict the expected failure loads and modes.The analytics and tests are supported by finite element(FE)calculations.From the analytic approach,design guidelines to avoid delamination in AM sandwich structures are derived.The study presents a critical face sheet thickness to strut diameter ratio for which the structure can delaminate.This ratio is mainly influenced by the inclination of the struts.The peel tests resulted in face yielding,which can also be inferred from the analytics and numerics.The out-of-plane tensile tests didn’t damage the structure.展开更多
This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a freque...This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a frequency range from 10 to 3000 Hz. The structure is backed with a rigid wall which can either be Aluminium or Al-Alloy used in aeronautic or automobile. The wave propagation in porous media is addressed using Johnson Champoux Allard model (JCA). The FEM model developed using COMSOL Multiphysics software makes it possible to predict the acoustic absorption coefficient in multilayer microperforated panels (M-MPPs) and sandwich structure. It is shown that, when structures made by MPPs or sandwich materials are submitted to high temperature, the absorption performance of the structure is strongly modified in terms of amplitude and width of the bandgap. For application in sever environment (noise reduction in engines aircrafts), Temperature is one of the parameters that will most influence the absorption performance of the structure. However, for application in the temperature domain smaller than 50?C (automotive applications for example), the effect of temperature is not significant on absorption performance of the structure.展开更多
The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,th...The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,the gap is still hardly bridged between experimental results and theoretical analyses.Therefore,a method has been innovated to establish semi-empirical formula for the prediction of compressive and shear moduli of X-cor sandwich structure composites,by combining theoretical analyses and experimental data.In addition,aprediction software was first developed based on the proposed method,of which the accuracy was verified through confirmatory experiments.This software can offer a direct reference or guide for engineers in structural designing.展开更多
Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic resp...Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed.展开更多
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu...In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.展开更多
The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Th...The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.展开更多
The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding ...The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234.The out-of-plane compression and shear tests were conducted.Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures.Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures.展开更多
Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique ...Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique impact are studied by numerical simulation and experiment.The oblique impact model is established,and the reliability of the model is verified by the oblique impact test.To further analyze the influence of structural parameters on energy absorption under oblique impact,the influence of impact angle,face sheet thickness and wall thickness of the honeycomb is numerically studied.The results show that the impact angle has an important effect on energy distribution.The structural parameters also have an effect on the peak contact force,contact time,and energy absorption,and the effect is different from normal impact due to the presence of frictional dissipation energy.Compared with normal impact,the debonding of oblique impact will be reduced,but the buckling range of the honeycomb core will be expanded.展开更多
The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and...The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and mold pressing,require multiple steps and complex tools,thus limiting the exploration of advanced sandwich structure designs.This study reports a novel multi-material additive manufacturing(AM)process that allows the single-step production of continuous fiber-reinforced polymer composite(CFRPC)sandwich structures with multiscale cellular cores.Specifically,the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs.The cellular core design spans three levels:microcellular,unit-cell,and graded structures.Sandwich structures with a diverse set of unit-cell designs,that is,rhombus,square,honeycomb,and re-entrant honeycomb,were fabricated and their flexural behaviors were studied experimentally.The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness,strength,and specific energy absorption.In addition,the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined.The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches.展开更多
This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures, where a PM layer is located between two PE layers with the sa...This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures, where a PM layer is located between two PE layers with the same material properties or reversely. The end of the sandwich structure is subjected to a set of self-equilibrated magneto-electro-elastic loads. The upper and lower surfaces of the sandwich structure axe mechanically free, electrically open or shorted as well as magnetically open or shorted. Firstly the constitutive equations of PE mate- rials and PM materials for plane strain are given and normalized. Secondly, the simplified state space approach is employed to arrange the constitutive equations into differential equations in a matrix form. Finally, by using the transfer matrix method, the characteristic equations for eigen- values or decay rates axe derived. Based on the obtained characteristic equations, the decay rates for the PE-PM-PE and PM-PE-PM sandwich structures are calculated. The influences of the electromagnetic boundary conditions, material properties of PE layers and volume fraction on the decay rates are discussed in detail.展开更多
In order to make a breakthrough in Mesozoic-Paleozoic shale gas exploration in the South Yellow Sea Basin,a comparison of the preservation conditions was made within the Barnett shale gas reservoirs in the Fortworth B...In order to make a breakthrough in Mesozoic-Paleozoic shale gas exploration in the South Yellow Sea Basin,a comparison of the preservation conditions was made within the Barnett shale gas reservoirs in the Fortworth Basin,the Jiaoshiba shale gas reservoirs in Sichuan Basin and potential shale gas reservoirs in Guizhou Province.The results show that the "Sandwich"structure is of great importance for shale gas accumulation.Therein to,the "Sandwich"structure is a kind of special reservoir-cap rock assemblage which consist of limestone or dolomite on the top,mudstone or shale layer in the middle and limestone or dolomite at the bottom.In consideration of the Mesozoic-Paleozoie in the Lower Yangtze,and Laoshan Uplift with weak Paleozoic deformation and thrust fault sealing On both flanks of the Laoshan Uplift,a conclusion can be drawn that the preservation conditions of shale gas probably developed "Sandwich" structures in the Lower Cambrian and Permian,which are key layers for the breakthrough of shale gas in the South Yellow Sea.Moreover,the preferred targets for shale gas drilling probably locate at both flanks of the Laoshan Uplift.展开更多
In this article,the design of the hourglass truss sandwich structure is improved by optimizing the number of layers to enhance the compressive strength of both the core and the face sheet and then its mechanical perfo...In this article,the design of the hourglass truss sandwich structure is improved by optimizing the number of layers to enhance the compressive strength of both the core and the face sheet and then its mechanical performance. The hourglass truss structures characterized by three different numbers of layers are manufactured using an interlocking and vacuum brazing method. The effect of the layer number of the hourglass core panels on their out-of-plane compression and in-plane compression performance is investigated,and the results from calculations and experiments are in reasonable agreement. The results show that as the layer number of the hourglass core increases,the out-of-plane compressive strengths show little change,but their energy absorption properties are effectively increased. The in-plane compressive failure mechanism maps are constructed,and the specimens are designed to examine the local elastic and inelastic buckling failure modes of the face sheets. The results suggest that as the number of layers of the hourglass core increases,its maximum in-plane compressive load increases. The maximum in-plane compressive loads of the two-layer hourglass truss panels are 57%–70% higher than those of the single-layer panels. It can also be concluded that the out-of-plane and in-plane compression mechanical properties of the multilayer hourglass truss outperform those of the pyramidal truss. Furthermore,the number of layers of the hourglass core is optimized in consideration of both mechanical properties and fabrication cost.展开更多
The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich str...The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich structure was designed.The generation mechanism and recurrence formula of theHilbert fractal were expressed by Lin’s language,and the second-orderHilbert sandwich structure was constructed fromthermoplastic polyurethane.The constitutive model of the hyperelastic body was established by using the finite element method.With the unit mass energy absorption as the optimization goal,the fractal sandwich structure was optimized,and the best result was obtained when the order was 2.5 and the unit layer thickness was 0.75 mm.TheHilbert sandwich structure was compared with the rice-shaped sandwich structure commonly used in industry,and the Hilbert fractal structure had better energy absorption.This has practical significance for the development and application of newcushioning packaging structures.展开更多
High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar...High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar-type,whose thermal sensitive area has to be perpendicular to the test environment,and therefore affects the thermal fluids pattern or loses accuracy.In order to address this problem,recent studies have developed three-dimensional probe-type TFTCs,which can be set parallel to the test environment.Nevertheless,the probe-type TFTCs are limited by their measurement threshold and poor stability at high temperatures.To address these issues,in this study,we propose a novel probe-type TFTC with a sandwich structure.The sensitive layer is compounded with indium oxide doped zinc oxide and fabricated using screen-printing technology.With the protection of sandwich structure on electrode film,the sensor demonstrates robust high-temperature stability,enabling continuous working at 1200℃ above 5 h with a low drift rate of 2.3℃·h^(−1).This sensor exhibits a high repeatability of 99.3% when measuring a wide range of temperatures,which is beyond the most existing probe-type TFTCs reported in the literature.With its excellent high-temperature performance,this temperature sensor holds immense potentials for enhancing equipment safety in the aerospace engineering and ensuring product quality in the steel metallurgy industry.展开更多
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ...Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.展开更多
This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage mode...This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage modes due to the impact, including the residual indentation on the impacted facesheet, the initially crushed core under the impacted area, and the delamination are incorporated into the model. A consequential core crushing mechanism is incorporated into the analysis by using an element deactivation technique. Damage propagation behavior, which corresponds to those observed in sandwich compression after impact (SCAI) tests, has been successfully captured in the numerical simulation. The critical far field stress corresponding to the onset of damage propagation at specified critical locations near the damage zone are captured successfully. They show a good correlation with experimental data. These values can be used to effectively predict the residual compressive strength of low-velocity impact damaged composite sandwich panels.展开更多
This paper deals with the theoretical prediction of global buckling loads for carbon fiber composite pyramidal truss core sandwich columns. Different from thin plate structures, transverse shear effect can not be negl...This paper deals with the theoretical prediction of global buckling loads for carbon fiber composite pyramidal truss core sandwich columns. Different from thin plate structures, transverse shear effect can not be neglected for sandwich structures. In addition, the attributes of the laminated face sheets are considered in the present paper. A zig-zag displacement approximation is made. Based on the principle of minimum potential en- ergy, equilibrium equations and boundary conditions are derived via the variational method. The critical buck- ling loads under various boundary conditions are presented. In order to validate the reasonableness of the equiv- alent-core method, the strain energies stored in the actual discrete truss members and the equivalent continuous homogenous core layer are calculated respectively and compared, and a good agreement is obtained. The pro- posed analytical method is verified by comparing with the published theoretical predictions and experimental re- suhs.展开更多
基金supported by the Defense Industrial Technology Development Program(Grant No.JCKY2018604B004)the National Natural Science Foundation of China(Grant No.11972007)。
文摘In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
文摘Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well.
基金Part of this work was supported by the German Federal Ministry for Economic Affairs and Energy(BMWi)(Grant No.20E1713B).
文摘Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed.Most common manufacturing methods of sandwich structures involve adhesive bonding of the core material with the sheets.However,adhesive bonding is prone to delamination,a failure mode that is often difficult to detect.This paper presents the results of delamination testing of fully additive manufactured(AM)AlSi10Mg sandwich structures with pyramidal lattice truss core using Laser Powder Bed Fusion(LPBF).The faces and struts are 0.5 mm thick,while the core is 2 mm thick.The inclination of the struts is 45°.To characterise the bonding strength,climbing drum peel tests and out-of-plane tensile tests are performed.Analytical formulas are derived to predict the expected failure loads and modes.The analytics and tests are supported by finite element(FE)calculations.From the analytic approach,design guidelines to avoid delamination in AM sandwich structures are derived.The study presents a critical face sheet thickness to strut diameter ratio for which the structure can delaminate.This ratio is mainly influenced by the inclination of the struts.The peel tests resulted in face yielding,which can also be inferred from the analytics and numerics.The out-of-plane tensile tests didn’t damage the structure.
文摘This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a frequency range from 10 to 3000 Hz. The structure is backed with a rigid wall which can either be Aluminium or Al-Alloy used in aeronautic or automobile. The wave propagation in porous media is addressed using Johnson Champoux Allard model (JCA). The FEM model developed using COMSOL Multiphysics software makes it possible to predict the acoustic absorption coefficient in multilayer microperforated panels (M-MPPs) and sandwich structure. It is shown that, when structures made by MPPs or sandwich materials are submitted to high temperature, the absorption performance of the structure is strongly modified in terms of amplitude and width of the bandgap. For application in sever environment (noise reduction in engines aircrafts), Temperature is one of the parameters that will most influence the absorption performance of the structure. However, for application in the temperature domain smaller than 50?C (automotive applications for example), the effect of temperature is not significant on absorption performance of the structure.
基金supported by the Aviation Science Fund of China(Nos.2015ZE52049,2015ZE521049)
文摘The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,the gap is still hardly bridged between experimental results and theoretical analyses.Therefore,a method has been innovated to establish semi-empirical formula for the prediction of compressive and shear moduli of X-cor sandwich structure composites,by combining theoretical analyses and experimental data.In addition,aprediction software was first developed based on the proposed method,of which the accuracy was verified through confirmatory experiments.This software can offer a direct reference or guide for engineers in structural designing.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20180855)Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-E-0219Y01)Research and Practice Innovation Program of postgraduates in Jiangsu Province(Grant No.KYCX20-3076)。
文摘Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed.
文摘In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.
基金Supported by Defense Industrial Technology Development Program of China(Grant No.JCKY2020605C007)Key Research and Development Program of Jiangsu Province of China(Grant Nos.BE2022069,BE2022069-1,BE2022069-3)Aeronautical Science Foundation of China(Grant No.2020Z049052001).
文摘The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.
基金supported by the National Natural Science Foundation of China under Grant Nos.90816024 and 10872059the Major State Basic Research Development Program of China under Grant No. 2011CB610303+2 种基金the Fundamental Research Funds for the central Universities grant No. HIT. NSRIF. 2010069the Program of Excellent Team in Harbin Institute of Technologythe Program for New Century Excellent Talents in University under Grant No.NCET-08-0152
文摘The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234.The out-of-plane compression and shear tests were conducted.Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures.Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures.
基金This research was supported by the National Natural Science Foundations of China(Nos.52175153,U1833116,51705468 and 11402234)the China Scholarship Council(CSC).
文摘Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique impact are studied by numerical simulation and experiment.The oblique impact model is established,and the reliability of the model is verified by the oblique impact test.To further analyze the influence of structural parameters on energy absorption under oblique impact,the influence of impact angle,face sheet thickness and wall thickness of the honeycomb is numerically studied.The results show that the impact angle has an important effect on energy distribution.The structural parameters also have an effect on the peak contact force,contact time,and energy absorption,and the effect is different from normal impact due to the presence of frictional dissipation energy.Compared with normal impact,the debonding of oblique impact will be reduced,but the buckling range of the honeycomb core will be expanded.
基金supported by National Natural Science Foundation of China(Grant No.52105261)Shenzhen Science and Technology Inno-vation Committee of China(Grant No.JCYJ20210324104610028)Department of Education of Guangdong Province of China(Grant No.2022ZDZX3020).
文摘The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities.However,current manufacturing processes,such as hot-press molding and mold pressing,require multiple steps and complex tools,thus limiting the exploration of advanced sandwich structure designs.This study reports a novel multi-material additive manufacturing(AM)process that allows the single-step production of continuous fiber-reinforced polymer composite(CFRPC)sandwich structures with multiscale cellular cores.Specifically,the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs.The cellular core design spans three levels:microcellular,unit-cell,and graded structures.Sandwich structures with a diverse set of unit-cell designs,that is,rhombus,square,honeycomb,and re-entrant honeycomb,were fabricated and their flexural behaviors were studied experimentally.The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness,strength,and specific energy absorption.In addition,the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined.The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches.
基金Project supported by the National Natural Science Foundation of China (No. 10972147)
文摘This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures, where a PM layer is located between two PE layers with the same material properties or reversely. The end of the sandwich structure is subjected to a set of self-equilibrated magneto-electro-elastic loads. The upper and lower surfaces of the sandwich structure axe mechanically free, electrically open or shorted as well as magnetically open or shorted. Firstly the constitutive equations of PE mate- rials and PM materials for plane strain are given and normalized. Secondly, the simplified state space approach is employed to arrange the constitutive equations into differential equations in a matrix form. Finally, by using the transfer matrix method, the characteristic equations for eigen- values or decay rates axe derived. Based on the obtained characteristic equations, the decay rates for the PE-PM-PE and PM-PE-PM sandwich structures are calculated. The influences of the electromagnetic boundary conditions, material properties of PE layers and volume fraction on the decay rates are discussed in detail.
基金the Project of China Geological Survey (DD20160512, DD20160346)Science and Technology Development Fund Project of Shinan District (2018-4-006-ZH)+2 种基金Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources (MRE201311)National Natural Science Foundation (41776075,41702162)Natural Science Foundation of Shandong Province of China (ZR2017BD034).
文摘In order to make a breakthrough in Mesozoic-Paleozoic shale gas exploration in the South Yellow Sea Basin,a comparison of the preservation conditions was made within the Barnett shale gas reservoirs in the Fortworth Basin,the Jiaoshiba shale gas reservoirs in Sichuan Basin and potential shale gas reservoirs in Guizhou Province.The results show that the "Sandwich"structure is of great importance for shale gas accumulation.Therein to,the "Sandwich"structure is a kind of special reservoir-cap rock assemblage which consist of limestone or dolomite on the top,mudstone or shale layer in the middle and limestone or dolomite at the bottom.In consideration of the Mesozoic-Paleozoie in the Lower Yangtze,and Laoshan Uplift with weak Paleozoic deformation and thrust fault sealing On both flanks of the Laoshan Uplift,a conclusion can be drawn that the preservation conditions of shale gas probably developed "Sandwich" structures in the Lower Cambrian and Permian,which are key layers for the breakthrough of shale gas in the South Yellow Sea.Moreover,the preferred targets for shale gas drilling probably locate at both flanks of the Laoshan Uplift.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11902096)the China Postdoctoral Science Foundation(Grant No.2020M670886)the Heilongjiang Postdoctoral Fund(Grant No.LBH-Z19010)。
文摘In this article,the design of the hourglass truss sandwich structure is improved by optimizing the number of layers to enhance the compressive strength of both the core and the face sheet and then its mechanical performance. The hourglass truss structures characterized by three different numbers of layers are manufactured using an interlocking and vacuum brazing method. The effect of the layer number of the hourglass core panels on their out-of-plane compression and in-plane compression performance is investigated,and the results from calculations and experiments are in reasonable agreement. The results show that as the layer number of the hourglass core increases,the out-of-plane compressive strengths show little change,but their energy absorption properties are effectively increased. The in-plane compressive failure mechanism maps are constructed,and the specimens are designed to examine the local elastic and inelastic buckling failure modes of the face sheets. The results suggest that as the number of layers of the hourglass core increases,its maximum in-plane compressive load increases. The maximum in-plane compressive loads of the two-layer hourglass truss panels are 57%–70% higher than those of the single-layer panels. It can also be concluded that the out-of-plane and in-plane compression mechanical properties of the multilayer hourglass truss outperform those of the pyramidal truss. Furthermore,the number of layers of the hourglass core is optimized in consideration of both mechanical properties and fabrication cost.
基金supported by the Natural Science Foundation of Tianjin Munici-pality[21YDTPJC00480]the Science and Technology Project of Tianjin[20YDTPJC00830].
文摘The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich structure was designed.The generation mechanism and recurrence formula of theHilbert fractal were expressed by Lin’s language,and the second-orderHilbert sandwich structure was constructed fromthermoplastic polyurethane.The constitutive model of the hyperelastic body was established by using the finite element method.With the unit mass energy absorption as the optimization goal,the fractal sandwich structure was optimized,and the best result was obtained when the order was 2.5 and the unit layer thickness was 0.75 mm.TheHilbert sandwich structure was compared with the rice-shaped sandwich structure commonly used in industry,and the Hilbert fractal structure had better energy absorption.This has practical significance for the development and application of newcushioning packaging structures.
基金supports from the National Key Research and Development Program of China(2022YFB3207502).
文摘High-temperature thin-film thermocouples(TFTCs)have attracted significant attention in the aerospace and steel metallurgy industry.However,previous studies on TFTCs have primarily focused on the two-dimensional planar-type,whose thermal sensitive area has to be perpendicular to the test environment,and therefore affects the thermal fluids pattern or loses accuracy.In order to address this problem,recent studies have developed three-dimensional probe-type TFTCs,which can be set parallel to the test environment.Nevertheless,the probe-type TFTCs are limited by their measurement threshold and poor stability at high temperatures.To address these issues,in this study,we propose a novel probe-type TFTC with a sandwich structure.The sensitive layer is compounded with indium oxide doped zinc oxide and fabricated using screen-printing technology.With the protection of sandwich structure on electrode film,the sensor demonstrates robust high-temperature stability,enabling continuous working at 1200℃ above 5 h with a low drift rate of 2.3℃·h^(−1).This sensor exhibits a high repeatability of 99.3% when measuring a wide range of temperatures,which is beyond the most existing probe-type TFTCs reported in the literature.With its excellent high-temperature performance,this temperature sensor holds immense potentials for enhancing equipment safety in the aerospace engineering and ensuring product quality in the steel metallurgy industry.
基金Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEMS‐202101National Natural Science Foundation of China,Grant/Award Numbers:51902162,51902162+4 种基金National Key R&D Program of China,Grant/Award Number:2022YFB4201904Foundation of Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEM‐S‐202101National Key R&D Program,Grant/Award Number:2022YFB4201904Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources,the International Innovation Center for Forest Chemicals and Materialsanjing Forestry University。
文摘Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.
基金Project supported by the Scientific and Technological Innovation Foundation and the Developing Program for Outstanding Persons in NPU.
文摘This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage modes due to the impact, including the residual indentation on the impacted facesheet, the initially crushed core under the impacted area, and the delamination are incorporated into the model. A consequential core crushing mechanism is incorporated into the analysis by using an element deactivation technique. Damage propagation behavior, which corresponds to those observed in sandwich compression after impact (SCAI) tests, has been successfully captured in the numerical simulation. The critical far field stress corresponding to the onset of damage propagation at specified critical locations near the damage zone are captured successfully. They show a good correlation with experimental data. These values can be used to effectively predict the residual compressive strength of low-velocity impact damaged composite sandwich panels.
基金Sponsored by the National Science Foundation of China(Grant No. 11202059,11222216,11172080)the Major State Basic Research Development Program of China(Grant No. 2011CB610303)+1 种基金the Key Laboratory Opening Funding of Advanced Composites in Special Environment(2011)the Fun-damental Research Funds for the Central Universities(Grant No. HIT. NSRIF. 2010069)
文摘This paper deals with the theoretical prediction of global buckling loads for carbon fiber composite pyramidal truss core sandwich columns. Different from thin plate structures, transverse shear effect can not be neglected for sandwich structures. In addition, the attributes of the laminated face sheets are considered in the present paper. A zig-zag displacement approximation is made. Based on the principle of minimum potential en- ergy, equilibrium equations and boundary conditions are derived via the variational method. The critical buck- ling loads under various boundary conditions are presented. In order to validate the reasonableness of the equiv- alent-core method, the strain energies stored in the actual discrete truss members and the equivalent continuous homogenous core layer are calculated respectively and compared, and a good agreement is obtained. The pro- posed analytical method is verified by comparing with the published theoretical predictions and experimental re- suhs.