Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has ...Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.展开更多
[Objective] The aim was to select a cultivation method suitable for sandy lands in Liaoning Province. [Method] The research explored effects of autumn plowing, autumn rotary cultivation, autumn ridging, and rotary cul...[Objective] The aim was to select a cultivation method suitable for sandy lands in Liaoning Province. [Method] The research explored effects of autumn plowing, autumn rotary cultivation, autumn ridging, and rotary cultivation before spring sowing on physical and chemical properties. [Result] By autumn plowing, surface soils were seriously eroded, more water was evaporated, and more nutrients lost; by autumn rotary cultivation, surface soils were seriously eroded also, reducing wa- ter content and nutrients; by autumn ridging, surface soils were slightly eroded, so that evaporation was light and fewer nutrients lost; by rotary cultivation before spring sowing, soil erosion was the lightest, with more water and nutrients maintained. [Conclusion] It is effective for improving anti-wind erosion by no-tillage during fallow period and land reclamation before sowing in semi-dry areas.展开更多
The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this a...The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control, critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.展开更多
Six leaf traits,i.e.,fresh mass(FM),dry mass(DM),leaf dry matter content(DMC),area(AR),specific leaf area(SLA)and thickness(TH)from 23 plant species in the southeastern Keerqin Sandy Lands,China were measured.The resu...Six leaf traits,i.e.,fresh mass(FM),dry mass(DM),leaf dry matter content(DMC),area(AR),specific leaf area(SLA)and thickness(TH)from 23 plant species in the southeastern Keerqin Sandy Lands,China were measured.The results show that leaf traits of herbs were more diversified than those of shrubs and trees and aver-age SLA tended towards a decreasing trend from herbs to shrubs to trees.On the contrary,DMC and DM show an upward trend from herbs to shrubs to trees.No apparent difference was found in TH.Except for DM and TH,there were significant variations in SLA and DMC among three different growth forms.Moreover,a significant correlation was found between SLA and DMC.It is concluded that SLA and DMC could be used to predict species position along a resource use gradient.展开更多
Remote sensing is a valuable and effective tool for monitoring and estimating aboveground biomass (AGB) in large areas.The current international research on biomass estimation by remote sensing technique mainly focu...Remote sensing is a valuable and effective tool for monitoring and estimating aboveground biomass (AGB) in large areas.The current international research on biomass estimation by remote sensing technique mainly focused on forests,grasslands and crops,with relatively few applications for desert ecosystems.In this paper,Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images from 1988 to 2007 and the data of 283 AGB samples in August 2007 were used to estimate the AGB for Mu Us Sandy Land over the past 30 years.Moreover,temporal and spatial distribution characteristics of AGB and influencing factors of climate and underlying surface were also studied.Results show that:(1) Differences of correlations exist in the fitted equations between AGB and different vegetation indices in desert areas.The modified soil adjusted vegetation index (MSAVI) and soil adjusted vegetation index (SAVI) show relatively higher correlations with AGB,while the correlation between normalized difference vegetation index (NDVI) and AGB is relatively lower.Error testing shows that the AGB-MSAVI model established can be used to accurately estimate AGB of Mu Us Sandy Land in August.(2) AGB in Mu Us Sandy Land shows the fluctuant characteristics over the past 30 years,which decreased from the 1980s to the 1990s,and increased from the 1990s to 2007.AGB in 2007 had the highest value,with a total AGB of 3.352×106 t.Moreover,in the 1990s,AGB had the lowest value with a total AGB of 2.328×106 t.(3) AGB with relatively higher values was mainly located in the middle and southern parts of Mu Us Sandy Land in the 1980s.AGB was low in the whole area in the1990s,and relatively higher AGB values were mainly located in the southern parts of Uxin.In 2007,AGB in the whole area was relatively higher than those of the last twenty years,and higher AGB values were mainly located in the northern,western and middle parts of Mu Us Sandy Land.展开更多
In order to investigate the dynamic evolution of the sandy land-lake-vegetation landscape in Songnen Sandy Land(SSL)and its response to climate change and human activities,the distribution pattern,evolution,and drivin...In order to investigate the dynamic evolution of the sandy land-lake-vegetation landscape in Songnen Sandy Land(SSL)and its response to climate change and human activities,the distribution pattern,evolution,and driving mechanisms of the landscape were analyzed based on Landsat satellite images and meteorological and socio-economic data during 1980–2020.The results indicate that the area of sandy land exhibited an upward fluctuation during the last 40 yr,with a net increase of 251.75 km^(2) at an increment rate of 3.80%/10 yr.The lake area also exhibited an upward fluctuation,with a net increase of 1200.95 km^(2) at an increment rate of 20.42%/10 yr.Vegetation coverage decreased by 2633.30 km^(2),with areas of low vegetation coverage exhibiting a trend of initial decline and subsequent increase,areas of medium vegetation coverage showed an upward fluctuation,and areas of high vegetation coverage showed a trend of initial increase and subsequent decrease,with overall changes of–0.67%/yr,1.12%/yr,and 0.17%/yr,respectively.The relationships between sandy land,lakes,and vegetation coverage were significant,with areas of sandy land and low vegetation coverage showing the strongest correlation.The dynamic evolution of landscape is controlled by regional climatic and socio-economic factors,with socio-economic factors as the first principal component contributing up to 59.64%.展开更多
Aims In forest ecosystems,different types of regression models have been frequently used for the estimation of aboveground biomass,where Ordinary Least Squares(OLS)regression models are the most common prediction mode...Aims In forest ecosystems,different types of regression models have been frequently used for the estimation of aboveground biomass,where Ordinary Least Squares(OLS)regression models are the most common prediction models.Yet,the relative performance of Bayesian and OLS models in predicting aboveground biomass of shrubs,especially multi-stem shrubs,has relatively been less studied in forests.Methods In this study,we developed the biomass prediction models for Caragana microphylla Lam.which is a widely distributed multi-stems shrub,and contributes to the decrease of wind erosion and the fixation of sand dunes in the Horqin Sand Land,one of the largest sand lands in China.We developed six types of formulations under the framework of the regression models,and then,selected the best model based on specific criteria.Consequently,we estimated the parameters of the best model with OLS and Bayesian methods with training and test data under different sample sizes with the bootstrap method.Lastly,we compared the performance of the OLS and Bayesian models in predicting the aboveground biomass of C.microphylla.Important Findings The performance of the allometric equation(power=1)was best among six types of equations,even though all of those models were significant.The results showed that mean squared error of test data with non-informative prior Bayesian method and the informative prior Bayesian method was lower than with the OLS method.Among the tested predictors(i.e.plant height and basal diameter),we found that basal diameter was not a significant predictor either in OLS or Bayesian methods,indicating that suitable predictors and well-fitted models should be seriously considered.This study highlights that Bayesian methods,the bootstrap method and the type of allometric equation could help to improve the model accuracy in predicting shrub biomass in sandy lands.展开更多
Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental ...Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental factors remains limited,especially in sensitive and fragile ecosystems.In this study,geographic patterns of bacterial diversity across four sandy grasslands along a 1,600 km north-south transect in northern China were characterized by high-throughput 16S rRNA gene sequencing.Then,we analyzed the driving factors behind the patterns in bacterial diversity.The results show that of the 21 phyla detected,the most abundant were Proteobacteria,Actinobacteria,Acidobacteria and Fir‐micutes(average relative abundance>5%).Soil bacterial operational taxonomic unit(OTU)numbers(richness)and Faith's phylogenetic diversity(diversity)were highest in the Otindag Sandy Land and lowest in the Mu Us Sandy Land.Soil electrical conductivity(EC)was the most influential factor driving bacterial richness and diversity.The bacterial communities differed significantly among the four sandy grasslands,and the bacterial community structure was signifi‐cantly affected by environmental factors and geographic distance.Of the environmental variables examined,climatic factors(mean annual temperature and precipitation)and edaphic properties(pH and EC)explained the highest propor‐tion of the variation in bacterial community structure.Biotic factors such as plant species richness and aboveground bio‐mass exhibited weak but significant associations with bacterial richness and diversity.Our findings revealed the impor‐tant role of climate and salinity factors in controlling bacterial richness and diversity;understanding these roles is critical for predicting the impacts of climate change and promoting sustainable management strategies for ecosystem services in these sandy lands.展开更多
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin...Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.展开更多
For the purpose of of forestation, planning and development in the Three-North Region, a series of 6 Landsat TM scenesfrom 1996 to 1997 were used to classify land-use conditions in the whole Korqin Sandy Lands at east...For the purpose of of forestation, planning and development in the Three-North Region, a series of 6 Landsat TM scenesfrom 1996 to 1997 were used to classify land-use conditions in the whole Korqin Sandy Lands at eastern part of Inner Mongolia, China, with an area of about 430×306 square kilometers. Later on, Site classiflcation was made and mapped for the 4 southern sandy counties. The annotation symbol for each agglomeration of site condition is comprised of six parts: land unit, land use pattern, soi...展开更多
Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of Chi...Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.展开更多
The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, ...The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, total P and C: N ratio of the soil inP. sylvestris var.mongolica stands were significantly higher in comparison with those inP. tabulaeformis andP. densiflora stands. ForP. sylvestris var.mongolica, the foliar P concentration appeared to decrease with age, and the foliar N and K concentrations did not show a consistent change with age. As for the different tree species of the similar age, the foliar N and P concentrations were significantly different (p<0.05), being withP. sylvestris var.mongolica>P. densiflora>P. tabulaeformis. The foliar N: P ratio ofP. densiflora significantly was higher thanP. sylvestris var.mongolica andP. tabulaeformis, while the foliar K was no obvious difference between the three tree species. There were significant correlation (p<0.05) between soil total N and P, soil organic matter and total P, foliar N and P, but it did not show significant correlations between soil and foliar nutrient concentrations, which might attribute to the excessive litter raking, overgrazing and low soil moisture in this area. Based on the foliar N: P ratio, we introduced a combination threshold index of N: P ratio with their absolute foliar nutrient concentrations to determine the possible limiting nutrient. According to the critical N: P ratio and their absolute foliar N, P concentrations, theP. sylvestris var.mongolica stands showed a decreased N limitation degree with age, theP. densiflora stands showed unlimited by N and P in the whole, and theP. tabulaeformis stands showed co-limited by N and P. No significant difference in soil nutrient concentrations of the surface soils was found between 45, 29, 20-yr-oldPinus sylvestris var.mongolica plantation stands. Keywords coniferous trees - foliar nutrient concentration - limiting nutrients - N - P ratio - Zhanggutai sandy land CLC number S718.55 Document code A Article ID 1007-662X(2004)01-0011-08 Foundation item: This research was supported by Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.Biography: CHEN Guang-sheng (1978-), male, master candidate in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Song Funan展开更多
Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segments between interconnected neighbor ramets. To investigate the phenotypic plasticity in response to the heterogeneous soil wate...Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segments between interconnected neighbor ramets. To investigate the phenotypic plasticity in response to the heterogeneous soil water supply, ramet pairs of the species were subjected to heterogeneous water supply by which either mother ramets or daughter ramets were in high or low soil water supply, respectively, in the Maowusu (Mu Us) Sandy Land of Nei Mongol. The results showed that the phenotypic characteristics of the individual ramets of C epigejos were greatly influenced by the heterogeneous water supply. The ramets treated with high water supply significantly produced more new rhizomes and more offspring (ramets), and accumulated more shoot biomass, and allocated more biomass to their shoots than those treated with low water supply. In comparison with the daughter ramets in homogeneous soil water supply, phenotypic characteristics, in terms of new rhizome growth, the production of new offspring, and the biomass allocation pattern, of the daughter ramets within the pairs of the species were not significantly changed, no matter that high or low soil water supply to mother ramets. The phenotypic responses of mother ramets to soil water supply were similar to those of daughter ramets. From these results, it is inferred that the interconnected ramets of C epigejos response phenotypically to their local soil water rather than to the soil water experienced by the interconnected ramets. The interconnected ramets of C epigejos might be independent of each other in water relationship, although they are physically interconnected with rhizome segments. The physiological independence of interconnected ramets might facilitate the risk spreading and thus enhance the genet survivorship under the frequent drought stresses in Mu Us Sandland.展开更多
[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered...[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.展开更多
A new species, Spirulina (Arthrospira) bayannurensis B. Sh. Li et C. Qiao sp. nov. was firstly collected from the Lake of Bayannur, Mu Us Sandy Land, Inner Mongolia Autonomous Region in China on April 30, 199...A new species, Spirulina (Arthrospira) bayannurensis B. Sh. Li et C. Qiao sp. nov. was firstly collected from the Lake of Bayannur, Mu Us Sandy Land, Inner Mongolia Autonomous Region in China on April 30, 1996 The morphological characteristics of the new species are described and illustrated by light micrographs, scanning and transmission electron micrographs. The type specimen of this new species is kept in Herbarium of Inner Mongolia Agricultural University.展开更多
In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us De...In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.展开更多
Nitrogen was the main limiting nutrient of net primary production in the southeastern Keerqin Sandy Lands, Northeast China. Species richness declined and biomass increased after five consecutive years of nitrogen fert...Nitrogen was the main limiting nutrient of net primary production in the southeastern Keerqin Sandy Lands, Northeast China. Species richness declined and biomass increased after five consecutive years of nitrogen fertilization of these sandy grasslands (2004-2008). After fertilization had been stopped for three years (2009-2011), we surveyed vegetation on previously fertilized plots to quantify changes in commu- nity composition. Respect species richness showed an increasing trend over time since the cessation of fertilization. Respect vegetation height and coverage showed decreasing trends over time since the cessation of fertilization. Species composition changed after fertilization ceased, the dominant species shifting from Cannabis sativa, Phragmites communis and Chenopodium acuminaturn in 2008 to Cannabis sativa, Phragmites communis and Artemisia scoparia in 2011. Dominance of dominant species declined from 66.2% in 2008 to 57.5% in 2011. The importance value of annual plants in the earlier nitrogen addition plots was higher than in control plots, but the differences were not significant in 2011. The importance value of perennial plants differed significantly between treatments from 2009 to 2011. The reversion rate not only differed be- tween community characteristics, but also between functional groups in the same community characteristic. Although the residual effect of nitrogen addition on vegetation was still observed three years after fertilization ceased, the vegetation showed signs of recovery.展开更多
This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the e...This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention.展开更多
Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values o...Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.展开更多
基金financially supported by the National Natural Science Foundation of China (41371053, 31270501)the National Science and Technology Planning Project (2011BAC07B02)+1 种基金the Strategic Forerunner Project of Science and Technology, Chineses Academy of Sciences (XDA05050201-04-01)the Special Scientific Research Fund (201109025-2)
文摘Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.
文摘[Objective] The aim was to select a cultivation method suitable for sandy lands in Liaoning Province. [Method] The research explored effects of autumn plowing, autumn rotary cultivation, autumn ridging, and rotary cultivation before spring sowing on physical and chemical properties. [Result] By autumn plowing, surface soils were seriously eroded, more water was evaporated, and more nutrients lost; by autumn rotary cultivation, surface soils were seriously eroded also, reducing wa- ter content and nutrients; by autumn ridging, surface soils were slightly eroded, so that evaporation was light and fewer nutrients lost; by rotary cultivation before spring sowing, soil erosion was the lightest, with more water and nutrients maintained. [Conclusion] It is effective for improving anti-wind erosion by no-tillage during fallow period and land reclamation before sowing in semi-dry areas.
文摘The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control, critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.
基金This work was supported by grants from the National Science&Technology Supporting Program of China(No.2006BAD26B0201-1,No.2006BAC01A12)the National Natural Science Foundation of China(No.30471377)Korea Science and Engineering Foundation.We acknowledge Zhanyuan Yu,Bin Deng,Dongzhou Deng for their helps in sampling,and Heming Lin,Guiyan Ai for chemical analysis of samples。
文摘Six leaf traits,i.e.,fresh mass(FM),dry mass(DM),leaf dry matter content(DMC),area(AR),specific leaf area(SLA)and thickness(TH)from 23 plant species in the southeastern Keerqin Sandy Lands,China were measured.The results show that leaf traits of herbs were more diversified than those of shrubs and trees and aver-age SLA tended towards a decreasing trend from herbs to shrubs to trees.On the contrary,DMC and DM show an upward trend from herbs to shrubs to trees.No apparent difference was found in TH.Except for DM and TH,there were significant variations in SLA and DMC among three different growth forms.Moreover,a significant correlation was found between SLA and DMC.It is concluded that SLA and DMC could be used to predict species position along a resource use gradient.
基金funded by the National Nonprofit Institute Research Grant of Chinese Academy of Forestry(CAFYBB2011003,CAFYBB2011002)the Key Laboratory of Agrometeorological Support and Applied Technique of China Meteorological Administration(AMF201107,AMF201204)the National Natural Science Foundation of China(40801173)
文摘Remote sensing is a valuable and effective tool for monitoring and estimating aboveground biomass (AGB) in large areas.The current international research on biomass estimation by remote sensing technique mainly focused on forests,grasslands and crops,with relatively few applications for desert ecosystems.In this paper,Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images from 1988 to 2007 and the data of 283 AGB samples in August 2007 were used to estimate the AGB for Mu Us Sandy Land over the past 30 years.Moreover,temporal and spatial distribution characteristics of AGB and influencing factors of climate and underlying surface were also studied.Results show that:(1) Differences of correlations exist in the fitted equations between AGB and different vegetation indices in desert areas.The modified soil adjusted vegetation index (MSAVI) and soil adjusted vegetation index (SAVI) show relatively higher correlations with AGB,while the correlation between normalized difference vegetation index (NDVI) and AGB is relatively lower.Error testing shows that the AGB-MSAVI model established can be used to accurately estimate AGB of Mu Us Sandy Land in August.(2) AGB in Mu Us Sandy Land shows the fluctuant characteristics over the past 30 years,which decreased from the 1980s to the 1990s,and increased from the 1990s to 2007.AGB in 2007 had the highest value,with a total AGB of 3.352×106 t.Moreover,in the 1990s,AGB had the lowest value with a total AGB of 2.328×106 t.(3) AGB with relatively higher values was mainly located in the middle and southern parts of Mu Us Sandy Land in the 1980s.AGB was low in the whole area in the1990s,and relatively higher AGB values were mainly located in the southern parts of Uxin.In 2007,AGB in the whole area was relatively higher than those of the last twenty years,and higher AGB values were mainly located in the northern,western and middle parts of Mu Us Sandy Land.
基金Under the auspices of National Natural Science Foundation of China(No.41871022)Natural Science Foundation of Jilin Province(No.20210101398JC)。
文摘In order to investigate the dynamic evolution of the sandy land-lake-vegetation landscape in Songnen Sandy Land(SSL)and its response to climate change and human activities,the distribution pattern,evolution,and driving mechanisms of the landscape were analyzed based on Landsat satellite images and meteorological and socio-economic data during 1980–2020.The results indicate that the area of sandy land exhibited an upward fluctuation during the last 40 yr,with a net increase of 251.75 km^(2) at an increment rate of 3.80%/10 yr.The lake area also exhibited an upward fluctuation,with a net increase of 1200.95 km^(2) at an increment rate of 20.42%/10 yr.Vegetation coverage decreased by 2633.30 km^(2),with areas of low vegetation coverage exhibiting a trend of initial decline and subsequent increase,areas of medium vegetation coverage showed an upward fluctuation,and areas of high vegetation coverage showed a trend of initial increase and subsequent decrease,with overall changes of–0.67%/yr,1.12%/yr,and 0.17%/yr,respectively.The relationships between sandy land,lakes,and vegetation coverage were significant,with areas of sandy land and low vegetation coverage showing the strongest correlation.The dynamic evolution of landscape is controlled by regional climatic and socio-economic factors,with socio-economic factors as the first principal component contributing up to 59.64%.
基金supported by the National Natural Science Foundation of China(31870709)Economic and Social Development Project of Liaoning Province(2020lslktqn037)+1 种基金A.Ali was supported by the Special Project for Introducing Foreign Talents-Jiangsu‘Foreign Expert Hundred People Program’(BX2019084)Metasequoia Faculty Research Startup Funding at Nanjing Forestry University(163010230).
文摘Aims In forest ecosystems,different types of regression models have been frequently used for the estimation of aboveground biomass,where Ordinary Least Squares(OLS)regression models are the most common prediction models.Yet,the relative performance of Bayesian and OLS models in predicting aboveground biomass of shrubs,especially multi-stem shrubs,has relatively been less studied in forests.Methods In this study,we developed the biomass prediction models for Caragana microphylla Lam.which is a widely distributed multi-stems shrub,and contributes to the decrease of wind erosion and the fixation of sand dunes in the Horqin Sand Land,one of the largest sand lands in China.We developed six types of formulations under the framework of the regression models,and then,selected the best model based on specific criteria.Consequently,we estimated the parameters of the best model with OLS and Bayesian methods with training and test data under different sample sizes with the bootstrap method.Lastly,we compared the performance of the OLS and Bayesian models in predicting the aboveground biomass of C.microphylla.Important Findings The performance of the allometric equation(power=1)was best among six types of equations,even though all of those models were significant.The results showed that mean squared error of test data with non-informative prior Bayesian method and the informative prior Bayesian method was lower than with the OLS method.Among the tested predictors(i.e.plant height and basal diameter),we found that basal diameter was not a significant predictor either in OLS or Bayesian methods,indicating that suitable predictors and well-fitted models should be seriously considered.This study highlights that Bayesian methods,the bootstrap method and the type of allometric equation could help to improve the model accuracy in predicting shrub biomass in sandy lands.
基金study was funded by the National Natural Science Foundation of China(41773086,42042024,31400392,31670477)the Science and Technology Program of Gansu Province,China(18JR2RA026).
文摘Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental factors remains limited,especially in sensitive and fragile ecosystems.In this study,geographic patterns of bacterial diversity across four sandy grasslands along a 1,600 km north-south transect in northern China were characterized by high-throughput 16S rRNA gene sequencing.Then,we analyzed the driving factors behind the patterns in bacterial diversity.The results show that of the 21 phyla detected,the most abundant were Proteobacteria,Actinobacteria,Acidobacteria and Fir‐micutes(average relative abundance>5%).Soil bacterial operational taxonomic unit(OTU)numbers(richness)and Faith's phylogenetic diversity(diversity)were highest in the Otindag Sandy Land and lowest in the Mu Us Sandy Land.Soil electrical conductivity(EC)was the most influential factor driving bacterial richness and diversity.The bacterial communities differed significantly among the four sandy grasslands,and the bacterial community structure was signifi‐cantly affected by environmental factors and geographic distance.Of the environmental variables examined,climatic factors(mean annual temperature and precipitation)and edaphic properties(pH and EC)explained the highest propor‐tion of the variation in bacterial community structure.Biotic factors such as plant species richness and aboveground bio‐mass exhibited weak but significant associations with bacterial richness and diversity.Our findings revealed the impor‐tant role of climate and salinity factors in controlling bacterial richness and diversity;understanding these roles is critical for predicting the impacts of climate change and promoting sustainable management strategies for ecosystem services in these sandy lands.
基金funded by the National Natural Science Foundation of China(42171004)the Key Research and Development Program in Shaanxi Province,China(2021ZDLSF05-02)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0403)。
文摘Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.
文摘For the purpose of of forestation, planning and development in the Three-North Region, a series of 6 Landsat TM scenesfrom 1996 to 1997 were used to classify land-use conditions in the whole Korqin Sandy Lands at eastern part of Inner Mongolia, China, with an area of about 430×306 square kilometers. Later on, Site classiflcation was made and mapped for the 4 southern sandy counties. The annotation symbol for each agglomeration of site condition is comprised of six parts: land unit, land use pattern, soi...
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418) and by Nature Science Foundation of Liaoning Province (20021006).
文摘Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.
基金Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.
文摘The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, total P and C: N ratio of the soil inP. sylvestris var.mongolica stands were significantly higher in comparison with those inP. tabulaeformis andP. densiflora stands. ForP. sylvestris var.mongolica, the foliar P concentration appeared to decrease with age, and the foliar N and K concentrations did not show a consistent change with age. As for the different tree species of the similar age, the foliar N and P concentrations were significantly different (p<0.05), being withP. sylvestris var.mongolica>P. densiflora>P. tabulaeformis. The foliar N: P ratio ofP. densiflora significantly was higher thanP. sylvestris var.mongolica andP. tabulaeformis, while the foliar K was no obvious difference between the three tree species. There were significant correlation (p<0.05) between soil total N and P, soil organic matter and total P, foliar N and P, but it did not show significant correlations between soil and foliar nutrient concentrations, which might attribute to the excessive litter raking, overgrazing and low soil moisture in this area. Based on the foliar N: P ratio, we introduced a combination threshold index of N: P ratio with their absolute foliar nutrient concentrations to determine the possible limiting nutrient. According to the critical N: P ratio and their absolute foliar N, P concentrations, theP. sylvestris var.mongolica stands showed a decreased N limitation degree with age, theP. densiflora stands showed unlimited by N and P in the whole, and theP. tabulaeformis stands showed co-limited by N and P. No significant difference in soil nutrient concentrations of the surface soils was found between 45, 29, 20-yr-oldPinus sylvestris var.mongolica plantation stands. Keywords coniferous trees - foliar nutrient concentration - limiting nutrients - N - P ratio - Zhanggutai sandy land CLC number S718.55 Document code A Article ID 1007-662X(2004)01-0011-08 Foundation item: This research was supported by Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.Biography: CHEN Guang-sheng (1978-), male, master candidate in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Song Funan
文摘Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segments between interconnected neighbor ramets. To investigate the phenotypic plasticity in response to the heterogeneous soil water supply, ramet pairs of the species were subjected to heterogeneous water supply by which either mother ramets or daughter ramets were in high or low soil water supply, respectively, in the Maowusu (Mu Us) Sandy Land of Nei Mongol. The results showed that the phenotypic characteristics of the individual ramets of C epigejos were greatly influenced by the heterogeneous water supply. The ramets treated with high water supply significantly produced more new rhizomes and more offspring (ramets), and accumulated more shoot biomass, and allocated more biomass to their shoots than those treated with low water supply. In comparison with the daughter ramets in homogeneous soil water supply, phenotypic characteristics, in terms of new rhizome growth, the production of new offspring, and the biomass allocation pattern, of the daughter ramets within the pairs of the species were not significantly changed, no matter that high or low soil water supply to mother ramets. The phenotypic responses of mother ramets to soil water supply were similar to those of daughter ramets. From these results, it is inferred that the interconnected ramets of C epigejos response phenotypically to their local soil water rather than to the soil water experienced by the interconnected ramets. The interconnected ramets of C epigejos might be independent of each other in water relationship, although they are physically interconnected with rhizome segments. The physiological independence of interconnected ramets might facilitate the risk spreading and thus enhance the genet survivorship under the frequent drought stresses in Mu Us Sandland.
基金Supported by National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD16B0202)Special Fund for Forest Scientific Research in the Public Interest(201004018)~~
文摘[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.
文摘A new species, Spirulina (Arthrospira) bayannurensis B. Sh. Li et C. Qiao sp. nov. was firstly collected from the Lake of Bayannur, Mu Us Sandy Land, Inner Mongolia Autonomous Region in China on April 30, 1996 The morphological characteristics of the new species are described and illustrated by light micrographs, scanning and transmission electron micrographs. The type specimen of this new species is kept in Herbarium of Inner Mongolia Agricultural University.
基金Supported by Projects in the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period(2012BAD16B0202)National Natural Science Foundation of China(41171002)Scientific Research Foundation of Beijing Normal University~~
文摘In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.
基金supported by the Chinese Academy of Sciences,Projects No.XDA05050401 and XDA050570100the National Natural Science Foundation of China,Project No.30800143
文摘Nitrogen was the main limiting nutrient of net primary production in the southeastern Keerqin Sandy Lands, Northeast China. Species richness declined and biomass increased after five consecutive years of nitrogen fertilization of these sandy grasslands (2004-2008). After fertilization had been stopped for three years (2009-2011), we surveyed vegetation on previously fertilized plots to quantify changes in commu- nity composition. Respect species richness showed an increasing trend over time since the cessation of fertilization. Respect vegetation height and coverage showed decreasing trends over time since the cessation of fertilization. Species composition changed after fertilization ceased, the dominant species shifting from Cannabis sativa, Phragmites communis and Chenopodium acuminaturn in 2008 to Cannabis sativa, Phragmites communis and Artemisia scoparia in 2011. Dominance of dominant species declined from 66.2% in 2008 to 57.5% in 2011. The importance value of annual plants in the earlier nitrogen addition plots was higher than in control plots, but the differences were not significant in 2011. The importance value of perennial plants differed significantly between treatments from 2009 to 2011. The reversion rate not only differed be- tween community characteristics, but also between functional groups in the same community characteristic. Although the residual effect of nitrogen addition on vegetation was still observed three years after fertilization ceased, the vegetation showed signs of recovery.
基金Under the auspices of Key Direction Program of Chinese Academy of Science(No.KZCX2-YW-Q06-03)MajorState Basic Research Development Program of China(No.2009CB421103)+1 种基金National Natural Science Foundation of China(No.41001050)Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07201004)
文摘This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention.
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418), the 100-Young-Researcher-Project of Chinese Academy of Sciences, and by Nature Science Foundation of Liaoning Province (20021006). Acknowledgements We thank Professor Hexin Wang (Dalian University, China), Dr. Professor Zeng Dehui, and the graduate students in research group of Ecology and Management of Secondary Forest (Institute of Applied Ecology, Chinese Academy of Sciences) for their valuable discussion. We are grateful to Mr. Tao Yang (Institute of Applied Ecology, Chinese Academy of Sciences) for his field work. We also thank Dr. Professor Qingcheng Wang (Northeast Forestry University, China), Mr. Menqi Tu and Mr. Yuxiang Ge (Honghuaerji Forestry Bureau, Inner Mongolia, Hulunbeier, China) for providing the convenience during the field investigation.
文摘Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.