The purpose of this study was to determine if the substituted pyrimidine, CXB-909 (formerly known as KP544) which has been shown to amplify the effects of nerve growth factor in elevating choline-acetyltransferase act...The purpose of this study was to determine if the substituted pyrimidine, CXB-909 (formerly known as KP544) which has been shown to amplify the effects of nerve growth factor in elevating choline-acetyltransferase activity in vitro, could attenuate memory deficits in the mu-p-75 saporin injected mouse model of Alzheimer’s disease (AD). Seventy-one, seven-week old C57/BL6 mice received daily oral intubation of 10, 15, or 20 mg/kg CXB-909, or vehicle (0.5% methylcellulose solution), which continued for 32 days. At postnatal week nine, mice received bilateral intra-cerebroventricular injections of mu-p-75 saporin, or sterile phosphate buffered saline. Seven days after surgery, mice were trained for two days, on a cued-platform version of the Morris water maze task, and then tested on a four-day hidden-platform version, followed by a one-day probe version of this task. Mice injected with mu-p-75 saporin, had increased latency to find the hidden-platform compared to sham mice. Furthermore, mice treated with CXB-909 at the 10, and 15 mg/kg doses, significantly reduced their latency to reach the hidden-platform, compared to vehicle-treated mice given mu-p-75 saporin. These results suggest that CXB-909 can attenuate memory deficits in the mu-p-75 saporin injected mouse model of AD.展开更多
Background Previous studies using knockout mice document a key role for the integrin CD103 in promoting organ allograft rejection and graft-versus-host disease. However, a determination of whether blockade of the CD10...Background Previous studies using knockout mice document a key role for the integrin CD103 in promoting organ allograft rejection and graft-versus-host disease. However, a determination of whether blockade of the CD103 pathway represents a viable therapeutic strategy for intervention in these processes has proven problematic due to the lack of reagents that efficiently deplete CD103+ cells from wild type hosts. To circumvent this problem, in the present study, we invented an anti-CD103 immunotoxin (M290-SAP). We investigated whether M290-SAP has capacity to eliminate CD103-expressing cells in vivo and protect transplanted islets from destroying by host immune cells.Methods Flow cytometry was used to analyze the efficacy of M290-SAP in depleting CD103-expressing cells in vivo.Then using allogenic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, the therapeutic efficacy of CD103-expressing cell depletion was addressed.Results M290-SAP dramatically reduces the frequency and absolute numbers of CD103-expressing leukocytes in peripheral lymphatic tissues of treated mice. Balb/c islets transplanted into streptozotocin-induced diabetic C57BL/6 mice under single M290-SAP treatment showed an indefinite survival time compared with untreated mice, M290-treated mice and IgG-SAP treated mice (mean survival time, >100 days vs. <20 days). C57BL/6 islets transplanted into hyperglycemic NOD mice under single M290-SAP treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time 12-13 days vs. <7 days). Immunological analysis of mice with long-term islet allograft survival revealed an obvious atrophy thymus and severe downregulation of alloimmunity of CD8 subpopulation response to allogenic stimulation.Conclusion Regardless of the underlying mechanisms, these data document that depletion of CD103-expressing cells represents a viable strategy for therapeutic intervention in islet allograft rejection.展开更多
文摘The purpose of this study was to determine if the substituted pyrimidine, CXB-909 (formerly known as KP544) which has been shown to amplify the effects of nerve growth factor in elevating choline-acetyltransferase activity in vitro, could attenuate memory deficits in the mu-p-75 saporin injected mouse model of Alzheimer’s disease (AD). Seventy-one, seven-week old C57/BL6 mice received daily oral intubation of 10, 15, or 20 mg/kg CXB-909, or vehicle (0.5% methylcellulose solution), which continued for 32 days. At postnatal week nine, mice received bilateral intra-cerebroventricular injections of mu-p-75 saporin, or sterile phosphate buffered saline. Seven days after surgery, mice were trained for two days, on a cued-platform version of the Morris water maze task, and then tested on a four-day hidden-platform version, followed by a one-day probe version of this task. Mice injected with mu-p-75 saporin, had increased latency to find the hidden-platform compared to sham mice. Furthermore, mice treated with CXB-909 at the 10, and 15 mg/kg doses, significantly reduced their latency to reach the hidden-platform, compared to vehicle-treated mice given mu-p-75 saporin. These results suggest that CXB-909 can attenuate memory deficits in the mu-p-75 saporin injected mouse model of AD.
文摘Background Previous studies using knockout mice document a key role for the integrin CD103 in promoting organ allograft rejection and graft-versus-host disease. However, a determination of whether blockade of the CD103 pathway represents a viable therapeutic strategy for intervention in these processes has proven problematic due to the lack of reagents that efficiently deplete CD103+ cells from wild type hosts. To circumvent this problem, in the present study, we invented an anti-CD103 immunotoxin (M290-SAP). We investigated whether M290-SAP has capacity to eliminate CD103-expressing cells in vivo and protect transplanted islets from destroying by host immune cells.Methods Flow cytometry was used to analyze the efficacy of M290-SAP in depleting CD103-expressing cells in vivo.Then using allogenic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, the therapeutic efficacy of CD103-expressing cell depletion was addressed.Results M290-SAP dramatically reduces the frequency and absolute numbers of CD103-expressing leukocytes in peripheral lymphatic tissues of treated mice. Balb/c islets transplanted into streptozotocin-induced diabetic C57BL/6 mice under single M290-SAP treatment showed an indefinite survival time compared with untreated mice, M290-treated mice and IgG-SAP treated mice (mean survival time, >100 days vs. <20 days). C57BL/6 islets transplanted into hyperglycemic NOD mice under single M290-SAP treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time 12-13 days vs. <7 days). Immunological analysis of mice with long-term islet allograft survival revealed an obvious atrophy thymus and severe downregulation of alloimmunity of CD8 subpopulation response to allogenic stimulation.Conclusion Regardless of the underlying mechanisms, these data document that depletion of CD103-expressing cells represents a viable strategy for therapeutic intervention in islet allograft rejection.