Harmonic analysis of satellite altimetry data based on a global regular grid is affected by the grid spatial tessellation and placement of the grids.With the increase of latitude,the traditional lat/lon grid deforms g...Harmonic analysis of satellite altimetry data based on a global regular grid is affected by the grid spatial tessellation and placement of the grids.With the increase of latitude,the traditional lat/lon grid deforms greatly,resulting in uneven distribution of satellite altimeter data with latitude,which affects the extraction of tidal information.Alternatively,Hexagonal grids have been proved to be advantageous due to their isotropic,uniform neighbourhood,equal-area and more.Considering the merits above,the purpose of this paper is to use the global equal-area hexagonal grid to conduct a harmonic analysis of satellite altimeter data.First,the Icosahedron Snyder Equal Area projection method is used to construct a global equal-area hexagonal grid,Then the time series data of 19.8 years of Jason series satellite altimeter data are obtained.Finally,the harmonic constants of eight constituents(the M2,S2,N2,K2,K1,O1,P1,Q1)are extracted by harmonic analysis.By analysing the results,we conclude that the harmonic constants extracted from the global equal-area hexagonal grid have considerable accuracy and are consistent with the tidal characteristics of the eight components.Meanwhile,the accuracy of harmonic constants extracted from equal-area hexagonal grids is better than that of lat/lon grids.展开更多
The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, ...The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, a global weekly 0.5°×0.5°ocean surface current product was obtained over the period 2000 - 2008 by combining the geostrophic currents estimated from sea surface height with Ekman current estimated from the wind stress. Particularly, weight functions were introduced when calculating the Ekman currents to eliminate the discontinuity near 25°S and 25°N. These satellite-derived currents have been compared with TAO current meter and the SCUD product, respectively. The comparison showed that satellite-derived currents not only could capture the characteristics of ocean surface currents but also had high accuracy and reliability. The result showed that this innovatory method was effective.展开更多
This study is the fi rst to depict typhoon-induced continental shelf wave(CSW)propagation in the eastern Taiwan Strait(TWS)during the passage of Typhoon Meranti in 2016 using tidal gauge data and along-track satellite...This study is the fi rst to depict typhoon-induced continental shelf wave(CSW)propagation in the eastern Taiwan Strait(TWS)during the passage of Typhoon Meranti in 2016 using tidal gauge data and along-track satellite altimeter data.The strong amplitude response of sea level oscillations(within the range of 0.30–0.54 m)as a free,barotropic CSW after Meranti,which impacted the TWS,was clearly detected in time and frequency(in bands of 64–81 h)using wavelet and cross-wavelet analyses.The measured group and phase speeds were consistent with the dispersion curves for CSW with the fi rst-mode derived from the cross-shelf sections of the eastern TWS,with the mean speeds reaching 3 and 5.6±0.7 m/s,respectively.Coincidentally,the typhoon-induced sea level anomaly(SLA)was also captured by the satellite altimeter before this CSW entered into the TWS.Using the theoretical cross-shore CSW modes to fi t the SLA data,the results indicated that the fi rst three wave modes can interpret this CSW event appeared in the southern TWS very well,with the fi rst mode being the dominant one.展开更多
基金supported by the National Natural Science Foundation of China[42076203].
文摘Harmonic analysis of satellite altimetry data based on a global regular grid is affected by the grid spatial tessellation and placement of the grids.With the increase of latitude,the traditional lat/lon grid deforms greatly,resulting in uneven distribution of satellite altimeter data with latitude,which affects the extraction of tidal information.Alternatively,Hexagonal grids have been proved to be advantageous due to their isotropic,uniform neighbourhood,equal-area and more.Considering the merits above,the purpose of this paper is to use the global equal-area hexagonal grid to conduct a harmonic analysis of satellite altimeter data.First,the Icosahedron Snyder Equal Area projection method is used to construct a global equal-area hexagonal grid,Then the time series data of 19.8 years of Jason series satellite altimeter data are obtained.Finally,the harmonic constants of eight constituents(the M2,S2,N2,K2,K1,O1,P1,Q1)are extracted by harmonic analysis.By analysing the results,we conclude that the harmonic constants extracted from the global equal-area hexagonal grid have considerable accuracy and are consistent with the tidal characteristics of the eight components.Meanwhile,the accuracy of harmonic constants extracted from equal-area hexagonal grids is better than that of lat/lon grids.
基金supported by the National Natural Science Foundation of China(No.41306010,41276088 and 41206002)
文摘The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, a global weekly 0.5°×0.5°ocean surface current product was obtained over the period 2000 - 2008 by combining the geostrophic currents estimated from sea surface height with Ekman current estimated from the wind stress. Particularly, weight functions were introduced when calculating the Ekman currents to eliminate the discontinuity near 25°S and 25°N. These satellite-derived currents have been compared with TAO current meter and the SCUD product, respectively. The comparison showed that satellite-derived currents not only could capture the characteristics of ocean surface currents but also had high accuracy and reliability. The result showed that this innovatory method was effective.
基金Supported by the Science Foundation of Fujian Province(No.2019J01119)the Scientifi c Research Foundation of Third Institute of Oceanography,MNR(Nos.2017011,2019018)+1 种基金the National Natural Science Foundation of China(No.41506014)the National Key Research and Development Program of China(No.2016YFC1402607)。
文摘This study is the fi rst to depict typhoon-induced continental shelf wave(CSW)propagation in the eastern Taiwan Strait(TWS)during the passage of Typhoon Meranti in 2016 using tidal gauge data and along-track satellite altimeter data.The strong amplitude response of sea level oscillations(within the range of 0.30–0.54 m)as a free,barotropic CSW after Meranti,which impacted the TWS,was clearly detected in time and frequency(in bands of 64–81 h)using wavelet and cross-wavelet analyses.The measured group and phase speeds were consistent with the dispersion curves for CSW with the fi rst-mode derived from the cross-shelf sections of the eastern TWS,with the mean speeds reaching 3 and 5.6±0.7 m/s,respectively.Coincidentally,the typhoon-induced sea level anomaly(SLA)was also captured by the satellite altimeter before this CSW entered into the TWS.Using the theoretical cross-shore CSW modes to fi t the SLA data,the results indicated that the fi rst three wave modes can interpret this CSW event appeared in the southern TWS very well,with the fi rst mode being the dominant one.