期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6500 m
1
作者 Xiaolun Chen Xiaowen Luo +6 位作者 Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期112-122,共11页
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the... Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results. 展开更多
关键词 gravity anomaly bathymetry inversion VGGNet multibeam sonar satellite altimetry
下载PDF
Feasibility of maintaining satellite altimetry calibration site based on qianliyan islet at the Yellow Sea
2
作者 Bin Guan Zhongmiao Sun +2 位作者 Lei Yang Zhenhe Zhai Jian Ma 《Geodesy and Geodynamics》 EI CSCD 2023年第3期223-230,共8页
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order... The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed. 展开更多
关键词 satellite altimetry Altimeter calibration satellite radar altimeter Microwave radiometer JASON Tide gauge
下载PDF
A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE,GRACE,Satellite Altimetry,and EGM2008 被引量:10
3
作者 Wei Liang Jiancheng Li +2 位作者 Xinyu Xu Shengjun Zhang Yongqi Zhao 《Engineering》 SCIE EI 2020年第8期860-878,共19页
This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based ... This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States. 展开更多
关键词 Gravity field model GOCE GRACE satellite altimetry Block-diagonal least-squares
下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
4
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
下载PDF
Water storage variations in the Poyang Lake Basin estimated from GRACE and satellite altimetry 被引量:3
5
作者 Yang Zhou Shuanggen Jin +1 位作者 Robert Tenzer Jialiang Feng 《Geodesy and Geodynamics》 2016年第2期108-116,共9页
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var... The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water. 展开更多
关键词 Gravity Recovery and Climate Experiment(GRACE) satellite altimetry Terrestrial water storage variations Poyang Lake Basin
下载PDF
Variability of the Kuroshio extension system in 1992-2013 from satellite altimetry data 被引量:1
6
作者 Weiping Jiang Lifeng Peng +1 位作者 Taoyong Jin Shengjun Zhang 《Geodesy and Geodynamics》 2017年第2期103-110,共8页
The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly prod... The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly products from satellite altimetry are used to analyze the stability of the KE system. By analyzing the annually averaged sea surface topography, the variations of inter-annual path and annually averaged eddy kinetic energy at the KE region, the KE's two dynamic states are given as: the relatively stable state during 1993 1995, 2002-2005, and 2010-2012, and the unstable dynamic state among 1996-2001 and 2006-2009. During the stable state, the KE spindle had a shorter path length and smaller time-varying amplitude, as well as a trend to move northward. While during the unstable state, the KE spindle had a longer path length and an integral southward transport trend, and was observed to oscillate significantly over time. The analysis on the KE's upstream and downstream region gives the same variations, indi- cating that they are significantly affected by the El Nino events. The power spectrum of the mean latitudinal position variation of the KE's upstream and downstream shows significant quasi-decadal oscillation characteristics and strong annual signals. Furthermore, the correlation of the strength vari- ation between the southern RG and the KE's upstream is calculated to be 0.50 after low-pass filtering, and that of the mean latitudinal position variation between the southern RG and the KE's upstream/ downstream are 0.75/0.69 after low-pass filtering, respectively. The strong correlations demonstrated that the southern RG and the KE are closely linked. 展开更多
关键词 Kuroshio extension satellite altimetry Eddy kinetic energy Southern recirculation gyre Quasi-decadal oscillation
下载PDF
Mesoscale surface circulation and variability of Southern Indian Ocean derived by combining satellite altimetry and drifter observations
7
作者 BENNY N.Peter SHENBAKAVALLI Ranjan +2 位作者 MAZLAN Hashim MOHD Nadzri Reba MOHD Razali Mahmud 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第9期12-22,共11页
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argo... High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993-2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20~ and 40~E and in the eastern part between 80~E and 100~E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993-2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation. 展开更多
关键词 Antarctic Ocean CIRCULATION satellite altimetry eddy kinetic energy Southern Indian Ocean antarctic circumpolar wave
下载PDF
Absolute sea level variability of Arctic Ocean in 1993–2018 from satellite altimetry and tide gauge observations
8
作者 Yanguang Fu Yikai Feng +1 位作者 Dongxu Zhou Xinghua Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期76-83,共8页
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00... Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM. 展开更多
关键词 Arctic Ocean absolute sea level variability sea level anomaly satellite altimetry tide gauge
下载PDF
Seasonal Behaviour of Mesoscale Eddy Trajectories in the North Indian Ocean Based on Satellite Altimetry
9
作者 Shailesh Mohan Pednekar 《International Journal of Geosciences》 2022年第2期93-114,共22页
In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies... In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies manually and to understand seasonal changes in terms of phase speed. Mesoscale anomalies are detected as concentric circular shapes and diameters of ~90 km to 600 km and the minimum 30 days life cycle. Relatively higher eddy kinetic energy was noticed in the northwestern region of the NIO. Individual mesoscale anomalies, namely positive (warm, anticyclonic eddies) and negative (cold, cyclonic eddies) showing travelling direction westward in the NIO basins. In autumn, the number of negative anomalies detected is more than positive anomalies and vice versa during summer. The westward propagating positive (negative) anomalies in the Arabian Sea start appearing in winter (spring) along (away from) the west coast of India and west of 65°E;individual anomalies move to the west in spring/summer/autumn and collide along Somalia’s & Arabian coast. A group of positive (negative) anomalies trajectories appears as a tail at the southern tip of India are located west of the Laccadive ridge in winter (summer to autumn) associated with LH (LL). The Bay of Bengal (BB) trajectories show southwestward in northern BB, westward in central BB and northwestward in southern BB;individual anomalies are appearing along the west coast of Andaman & Nicobar ridge. The zonal phase speed decreases away from the equator, and the magnitude varies longitudinally in each season in the form of a wave-like pattern propagating westward from autumn to summer;the life cycle of the wave is almost 365 days (a year). The theoretical phase speed of the first mode of the baroclinic Rossby waves is quite similar to that of averaged zonal speed. Therefore mesoscale anomalies (eddies) are embedded into the large waves like phenomenon (Rossby waves), responsible for creating high variability and EKE in the region of NIO along the western boundaries. 展开更多
关键词 Remote Sensing satellite altimetry North Indian Ocean Circulation MSLA Mesoscale Eddy Seasonal Variability Positive and Negative Anomalies
下载PDF
The Time Series Spectral Analysis of Satellite Altimetry and Coastal Tide Gauges and Tide Modeling in the Coast of Caspian Sea 被引量:2
10
作者 Mahmoud Pirooznia Sayyed Rouhollah Emadi Mehdi Najafi Alamdari 《Open Journal of Marine Science》 2016年第2期258-269,共12页
This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between d... This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between discovered frequencies and 40 components of tide. For the purpose of collecting data of altimetry satellites of Topex/Poseidon (T/P), Jason 1, Jason 2 and coastal tide gauges of Bandar Anzali, Noshahr, and Nekah were utilized. In this time series formed by cross over points of altimetry satellite and then using least square spectral analysis on time series derived from altimetry satellite and coastal tide gauges the significant components were found and annual, biannual, and monthly components were discovered. Then, analysis of 40 tide components was conducted using harmonic method to find the amplitude and phase. It represented that solar annual (Sa) plays the most significant role on Caspian Sea corresponded to the least square spectral analysis of the time series. The results shows that the annual (Sa) and semi-annual Solar (Ssa) constituents on all of the ports listed have the highest amplitude in comparison with the other constituents which are respectively 16 cm, 18 cm and 15 cm for annual constituent and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual constituent. 展开更多
关键词 Least Square Spectral Analysis Harmonic Analysis altimetry satellite Coastal Tide Gauges
下载PDF
Suitable region of dynamic optimal interpolation for efficiently altimetry sea surface height mapping
11
作者 Jiasheng Shi Taoyong Jin 《Geodesy and Geodynamics》 EI CSCD 2024年第2期142-149,共8页
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa... The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11). 展开更多
关键词 Dynamic optimal interpolation Linearoptimal interpolation satellite altimetry Sea surface height Suitable region
下载PDF
Cloud Detection and Centroid Extraction of Laser Footprint Image of GF-7 Satellite Laser Altimetry 被引量:2
12
作者 Jiaqi YAO Guoyuan LI +3 位作者 Jiyi CHEN Genghua HUANG Xiongdan YANG Shuaitai ZHANG 《Journal of Geodesy and Geoinformation Science》 2021年第3期1-12,共12页
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera... The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability. 展开更多
关键词 GF-7 quality control satellite laser altimetry laser footprint image cloud detection stability analysis of laser pointing angle
下载PDF
The variation in basal channels and basal melt rates of Pine Island Ice Shelf
13
作者 Mingliang Liu Zemin Wang +2 位作者 Baojun Zhang Xiangyu Song Jiachun An 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期22-34,共13页
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly... In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS. 展开更多
关键词 Pine Island Ice Shelf basal channel basal melt rate digital elevation models(DEMs) satellite altimetry
下载PDF
Cotidal charts and tidal power input atlases of the global ocean from TOPEX/Poseidon and JASON-1 altimetry 被引量:5
14
作者 WANG Yihang FANG Guohong +3 位作者 WEI Zexun WANG Yonggang WANG Xinyi XU Xiaoqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第4期11-23,共13页
The global distributions of eight principal tidal constituents, M2, S2, K1, O1, N2, K2, P1, and Q1, are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the d... The global distributions of eight principal tidal constituents, M2, S2, K1, O1, N2, K2, P1, and Q1, are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30S and 30N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2, S2, K1, O1, N2, P1, K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW. 展开更多
关键词 satellite altimetry global ocean tides tidal energetics tidal power input
下载PDF
Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data 被引量:3
15
作者 Yanguang Fu Yikai Feng +3 位作者 Dongxu Zhou Xinghua Zhou Jie Li Qiuhua Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第12期1-10,共10页
In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a... In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a,FES2014,GOT4.8,HAMTIDE12,OSU12 and TPXO8,were considered.The accuracy of eight major tidal constituents(i.e.,Q1,O1,P1,K1,N2,M2,S2 and K2)were assessed for the shallow water and coastal areas based on the tidal constants derived from multi-mission satellite altimetry(TOPEX and Jason series)and tide gauge observations.The root mean square values of each constituent between satellite-derived tidal constants and tide models were found in the range of 0.72–1.90 cm in the deep ocean(depth>200 m)and 1.18–5.63 cm in shallow water area(depth<200 m).Large inter-model discrepancies were noted in the Strait of Malacca and the Taiwan Strait,which could be attributable to the complicated hydrodynamic systems and the paucity of high-quality satellite altimetry data.In coastal regions,an accuracy performance was investigated using tidal results from 37 tide gauge stations.The root sum square values were in the range of 9.35–19.11 cm,with the FES2014 model exhibiting slightly superior performance. 展开更多
关键词 accuracy assessment tide model satellite altimetry tide gauge South China Sea
下载PDF
An Arctic sea ice thickness variability revealed from satellite altimetric measurements 被引量:8
16
作者 BI Haibo HUANG Haijun +3 位作者 SU Qiao YAN Liwen LIU Yanxia XU Xiuli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第11期134-140,共7页
A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). E... A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). Estimates agree with various independent in situ measurements within 0.21 m. Both the fall and winter campaigns see a dramatic extent retreat of thicker MY ice that survives at least one summer melting season. There were strong seasonal and interannual variabilities with regard to the mean thickness. Seasonal increases of 0.53 m for FY the ice and 0.29 m for the MY ice between the autumn and the winter ICESat campaigns, roughly 4–5 month separation, were found. Interannually, the significant MY ice thickness declines over the consecutive four ICESat winter campaigns(2005–2008) leads to a pronounced thickness drop of 0.8 m in MY sea ice zones. No clear trend was identified from the averaged thickness of thinner, FY ice that emerges in autumn and winter and melts in summer. Uncertainty estimates for our calculated thickness, caused by the standard deviations of multiple input parameters including freeboard, ice density, snow density, snow depth, show large errors more than 0.5 m in thicker MY ice zones and relatively small standard deviations under 0.5 m elsewhere. Moreover, a sensitivity analysis is implemented to determine the separate impact on the thickness estimate in the dependence of an individual input variable as mentioned above. The results show systematic bias of the estimated ice thickness appears to be mainly caused by the variations of freeboard as well as the ice density whereas the snow density and depth brings about relatively insignificant errors. 展开更多
关键词 satellite altimetry ice thickness Arctic first-year ice multiyear ice
下载PDF
A new decomposition model of sea level variability for the sea level anomaly time series prediction
17
作者 Qinting SUN Jianhua WAN +2 位作者 Shanwei LIU Jinghui JIANG Yasir MUHAMMAD 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期1629-1642,共14页
Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit... Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction. 展开更多
关键词 time series decomposition satellite altimetry China Sea and its vicinity sea level change
下载PDF
Gravity anomalies determined from mean sea surface model data over the Gulf of Mexico
18
作者 Xuyang Wei Xin Liu +4 位作者 Zhen Li Xiaotao Chang Hongxin Luo Chengcheng Zhu Jinyun Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期39-50,共12页
With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculat... With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high. 展开更多
关键词 mean sea surface gravity anomaly Gulf of Mexico inverse Vening-Meinesz formula mean dynamic topography satellite altimetry
下载PDF
The global mean sea surface model WHU2013 被引量:4
19
作者 Taoyong Jin Jiancheng Li Weiping Jiang 《Geodesy and Geodynamics》 2016年第3期202-209,共8页
The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84... The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P), Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM) data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM) data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH), and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data) are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD) of the differences between the models is about S cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data. 展开更多
关键词 satellite altimetry Mean sea surface height Sea level variation Collinear adjustment Crossover adjustment
下载PDF
Bathymetry inversion using the deflection of the vertical:A case study in South China Sea 被引量:2
20
作者 Xiaoyun Wan Bo Liu +3 位作者 Xiaohong Sui Richard F.Annan Ruijie Hao Yijun Min 《Geodesy and Geodynamics》 CSCD 2022年第5期492-502,共11页
The deflection of the vertical is one of the essential products of altimetry.However,unlike gravity and vertical gravity gradients,it is seldom used in bathymetry inversion.In this study,an algorithm for bathymetry in... The deflection of the vertical is one of the essential products of altimetry.However,unlike gravity and vertical gravity gradients,it is seldom used in bathymetry inversion.In this study,an algorithm for bathymetry inversion using the deflection of the vertical is proposed.First,we separately derive the formulas for the bathymetry inversion from the north and east components of the vertical deflection and introduce the data processing.Then a local area in the South China Sea is selected as an example to test the method.The bathymetry inversion based on gravity anomaly is also conducted for comparison.Assuming the ship-borne depths are the true values,the error standard deviations(STDs)of the bathymetry derived by north and east components of the vertical deflection are 156.64 m and 165.57 m,respectively.It indicates that the north component has a better performance in bathymetry inversion than the east component.The inversion results from the combination of both components show a higher accuracy of bathymetry than that from a single component.The difference between the error STD of the combination results and that of the gravity anomaly is less than 0.2 m.The experiment’s results also show that the precision of the derived bathymetry can be improved if the parameters of linear regression are adjusted according to water depths.In summary,among the gravity field products used in this study,the gravity anomaly yielded the best performance in the bathymetry inversion.However,since additional data and computation time are required to derive gravity anomalies from altimetric observations,the vertical defections can still be used as supplements,especially in areas where accurate vertical deflections exist. 展开更多
关键词 BATHYMETRY Deflection of the vertical Gravity anomaly satellite altimetry
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部