In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concer...In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.展开更多
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl...As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.展开更多
文摘In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.
基金the National Defense Science and Technology Key Laboratory Fund of China(XM2020XT1023).
文摘As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.