For elders with dementia, wandering is among the most problematic, frequent and dangerous behavior. Managing wandering behavior has become increasingly imperative due to its high prevalence, negative outcomes and burd...For elders with dementia, wandering is among the most problematic, frequent and dangerous behavior. Managing wandering behavior has become increasingly imperative due to its high prevalence, negative outcomes and burden on caregivers. We study to propose an active infrared-based method to identify wandering locomotion by monitoring rhythmical repetition of an elder’s indoor motion events. Specifically, we utilize our customized active infrared sensors to collect human indoor motions that will be converted into motion events by using hardware redundancy technique. Each motion event is a directed motion obtained via introducing temporal and dimensions into the spatial motion data. Based on the most cited spatial-temporal patterns of wandering locomotion, a spatiotemporal model is then proposed to identify wandering locomotion from an ongoing sequence of motion events. Experimental evaluation on eight individuals’ real-world motion datasets has shown that our proposed method is able to effectively identify wandering locomotion from repetitive events collected from active infrared sensors with a value over 98% for both accuracy and precision based on properly chosen parameters. Wandering in elders with dementia that follow specific spatiotemporal patterns can be reliably identified by analyzing repetitive motion events collected from active infrared sensors based on the well-known spatiotemporal patterns of wandering locomotion.展开更多
Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of develop...Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.展开更多
Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method...Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method to realize such a skin.By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely.The developed sensor skin is a large-area, flexi-ble array of infrared sensors with data processing capabilities.Depending on the skin electronics, it en-dows its carrier with an ability to sense its surroundings.The structure, the method of infrared sensor sig-nal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.展开更多
This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed ci...This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.展开更多
The estimation of the position of a mobile target on a plane as well as its orientation is an important aspect for many applications. The indoor or outdoor localization of such a target has been widely addressed in th...The estimation of the position of a mobile target on a plane as well as its orientation is an important aspect for many applications. The indoor or outdoor localization of such a target has been widely addressed in the literature but if a third degree of freedom like rotation has to be also taken into consideration the difficulty in estimating the target position and orientation is significantly increased. A network consisting of only a small number of low cost infrared transmitters/receivers is used in this paper to estimate the position of a mobile target on a plane as well as its draft orientation with an angular step of 45o or less. The distance and orientation estimation is based on the success rate that infrared patterns are retrieved at the target. This success rate parameter is calculated by simple ultra low cost microcontrollers. The architectural complexity and cost of the overall localization system is significantly lower than other approaches without sacrificing speed and accuracy. An error correction scheme like Turbo decoding is applied in order to increase the reliability and stability of the results by correcting burst errors introduced by real time noise.展开更多
An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the ...An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.展开更多
A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill fa...A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill factor of 40 percent,the nonuniformity of 5% or less and the dynamic range of over or equal to 50 dB.The noise equivalent temperature difference is 0.2 K with f/1.0 optics at 300 K background. In this paper,the principle of operation,design consideration and fabrication technology for the device are described.展开更多
In this paper, The principle, structure and practical application of a novel multiple component gas infrared ray sensor are discussed. The optical gas sensor, which has infrared radiation impulses input and electric s...In this paper, The principle, structure and practical application of a novel multiple component gas infrared ray sensor are discussed. The optical gas sensor, which has infrared radiation impulses input and electric single output, is composed of narrow band light filter, optical taper and pyroelectric detector array. An infrared gas analyzer with multiple component gas tested synchronously consists of the sensor, single middle infrared source, single gas cell and computer data acquire system. As compared with sensor in other infrared gas analyzer, it has many merits such as novel structure, strong anti\|oscillate performance and low cost. Different gas in different measurement area can be analyzed quantitatively by replacing optical filter module easily.展开更多
Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alt...Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alternative technology like MCT(HgCdTe)was the technology choice of the 2^(nd) generation because of its high quantum efficiency.In the paper,measurements on the QWIP technology will be presented and a comparison with alternative technology will be done.展开更多
There is a growing interest in the Open Ag community to use inexpensive sensors controlled by open-source software to measure plant height and plant canopy temperature of agricultural crops. Plant height and plant can...There is a growing interest in the Open Ag community to use inexpensive sensors controlled by open-source software to measure plant height and plant canopy temperature of agricultural crops. Plant height and plant canopy temperature are key indicators of plant health. This research study reports on an ongoing research initiative to test a compact and inexpensive mobile sensor to measure plant height and plant canopy temperature. The system is controlled by open source software and hardware. The specific objectives for this study were to analyze the relationship between plant height and plant canopy temperature of soybeans (Glycine max L.) measured with the mobile system and to analyze the spatial correlation of the plant height and plant canopy temperature measurements. Data were collected in a soybean plot in 2018 and 2019. Descriptive statistics, Pearson correlation, and geostatistical techniques were used to evaluate the data. A negative statistically significant (p ≤ 0.05) relationship was observed between the plant height and the plant canopy temperature measurements (r = −0.54, 2018;r = −0.37, 2019). Also, both parameters were spatially correlated;however, plant height had a greater spatial continuity than plant canopy temperature. Furthermore, similar patterns were observed for the in-field variability of the plant height and plant temperature maps derived via kriging. Similarities in plant height and plant canopy temperatures were observed from one year to the next, suggesting that the sensor technologies could be used as a historical record for monitoring growth patterns in soybean fields. The sensors and techniques used in this study can be easily adapted to other crops, thus providing two important layers for monitoring plant growth and potentially plant stress.展开更多
Training sample selection is widely accepted as an important step in developing a near-infrared(NIR) spectroscopic model. For industrial applications, the initial training dataset is usually selected empirically. This...Training sample selection is widely accepted as an important step in developing a near-infrared(NIR) spectroscopic model. For industrial applications, the initial training dataset is usually selected empirically. This process is time-consuming, and updating the structure of the modeling dataset online is difficult. Considering the static structure of the modeling dataset, the performance of the established NIR model could be degraded in the online process. To cope with this issue, an active training sample selection and updating strategy is proposed in this work. The advantage of the proposed approach is that it can select suitable modeling samples automatically according to the process information. Moreover, it can adjust model coefficients in a timely manner and avoid arbitrary updating effectively. The effectiveness of the proposed method is validated by applying the method to an industrial gasoline blending process.展开更多
Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors an...Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.展开更多
In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents ...In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation micro- structures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.展开更多
The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement f...The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.展开更多
Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make...Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing.Herein,we propose a selfpowered and highly sensitive tribo-label-sensor(TLS)for accurate label identification,positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer.The sensing mechanism,device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment.As the results,TLS delivers 6 times higher signal magnitude than traditional one.Moreover,TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness.This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.展开更多
The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance...The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process. In this study, the keyhole and weld pool were observed and measured under different levels of welding current by using the near infrared sensing technology and the charge coupled device (CCD) sensing system. The shapes and relative position of weld pool and keyhole under different conditions were compared and analyzed. The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.展开更多
In order to reach the objective of intelligence and energy saving for university classroom lighting, energy saving lighting control system in university classroom based on wireless sensor network is designed, includin...In order to reach the objective of intelligence and energy saving for university classroom lighting, energy saving lighting control system in university classroom based on wireless sensor network is designed, including design of sensor node and sink, as well as corresponding development of control program and upper-computer software. The system sets single-chip Ameg16 as control center, realizes communication between nodes via nRF24L01 wireless transceiver module, and realizes communication between sink and upper computer via w5100 wireless internet module. It perceives illumination intensity via photoconductor, detects the human body position via infrared pyroelectric sensor, and places the sensor node on the lamp, so the light can be controlled according to position of human body and current illumination intensity, which can realize energy saving to a large extent on condition that lighting requirement is satisfied. The system has low cost, and there is no need to change the original lighting circuit. The light can be turned off by hand, and when multi-media are used for the class, light can keep off even it is dim. In addition, this system has the function of automatic fault report, which is convenient for property maintenance.展开更多
Purpose-The production of glycerol derivatives by the esterification process is subject to many constraints related to the yield of the production target and the lack of process efficiency.An accurate monitoring and c...Purpose-The production of glycerol derivatives by the esterification process is subject to many constraints related to the yield of the production target and the lack of process efficiency.An accurate monitoring and controlling of the process can improve production yield and efficiency.The purpose of this paper is to propose a real-time optimization(RTO)using gradient adaptive selection and classification from infrared sensor measurement to cover various disturbances and uncertainties in the reactor.Design/methodology/approach-The integration of the esterification process optimization using self-optimization(SO)was developed with classification process was combined with necessary condition optimum(NCO)as gradient adaptive selection,supported with laboratory scaled medium wavelength infrared(mid-IR)sensors,and measured the proposed optimization system indicator in the batch process.Business Process Modeling and Notation(BPMN 2.0)was built to describe the tasks of SO workflow in collaboration with NCO as an abstraction for the conceptual phase.Next,Stateflow modeling was deployed to simulate the three states of gradient-based adaptive control combined with support vector machine(SVM)classification and Arduino microcontroller for implementation.Findings-This new method shows that the real-time optimization responsiveness of control increased product yield up to 13 percent,lower error measurement with percentage error 1.11 percent,reduced the process duration up to 22 minutes,with an effective range of stirrer rotation set between 300 and 400 rpm and final temperature between 200 and 210℃ which was more efficient,as it consumed less energy.Research limitations/implications-In this research the authors just have an experiment for the esterification process using glycerol,but as a development concept of RTO,it would be possible to apply for another chemical reaction or system.Practical implications-This research introduces new development of an RTO approach to optimal control and as such marks the starting point for more research of its properties.As the methodology is generic,it can be applied to different optimization problems for a batch system in chemical industries.Originality/value-The paper presented is original as it presents the first application of adaptive selection based on the gradient value of mid-IR sensor data,applied to the real-time determining control state by classification with the SVM algorithm for esterification process control to increase the efficiency.展开更多
To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium ...To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.展开更多
文摘For elders with dementia, wandering is among the most problematic, frequent and dangerous behavior. Managing wandering behavior has become increasingly imperative due to its high prevalence, negative outcomes and burden on caregivers. We study to propose an active infrared-based method to identify wandering locomotion by monitoring rhythmical repetition of an elder’s indoor motion events. Specifically, we utilize our customized active infrared sensors to collect human indoor motions that will be converted into motion events by using hardware redundancy technique. Each motion event is a directed motion obtained via introducing temporal and dimensions into the spatial motion data. Based on the most cited spatial-temporal patterns of wandering locomotion, a spatiotemporal model is then proposed to identify wandering locomotion from an ongoing sequence of motion events. Experimental evaluation on eight individuals’ real-world motion datasets has shown that our proposed method is able to effectively identify wandering locomotion from repetitive events collected from active infrared sensors with a value over 98% for both accuracy and precision based on properly chosen parameters. Wandering in elders with dementia that follow specific spatiotemporal patterns can be reliably identified by analyzing repetitive motion events collected from active infrared sensors based on the well-known spatiotemporal patterns of wandering locomotion.
文摘Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.
基金Supported by the National Natural Science Foundation of China (No.50105002).
文摘Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method to realize such a skin.By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely.The developed sensor skin is a large-area, flexi-ble array of infrared sensors with data processing capabilities.Depending on the skin electronics, it en-dows its carrier with an ability to sense its surroundings.The structure, the method of infrared sensor sig-nal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.
文摘This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.
文摘The estimation of the position of a mobile target on a plane as well as its orientation is an important aspect for many applications. The indoor or outdoor localization of such a target has been widely addressed in the literature but if a third degree of freedom like rotation has to be also taken into consideration the difficulty in estimating the target position and orientation is significantly increased. A network consisting of only a small number of low cost infrared transmitters/receivers is used in this paper to estimate the position of a mobile target on a plane as well as its draft orientation with an angular step of 45o or less. The distance and orientation estimation is based on the success rate that infrared patterns are retrieved at the target. This success rate parameter is calculated by simple ultra low cost microcontrollers. The architectural complexity and cost of the overall localization system is significantly lower than other approaches without sacrificing speed and accuracy. An error correction scheme like Turbo decoding is applied in order to increase the reliability and stability of the results by correcting burst errors introduced by real time noise.
文摘An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.
文摘A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill factor of 40 percent,the nonuniformity of 5% or less and the dynamic range of over or equal to 50 dB.The noise equivalent temperature difference is 0.2 K with f/1.0 optics at 300 K background. In this paper,the principle of operation,design consideration and fabrication technology for the device are described.
文摘In this paper, The principle, structure and practical application of a novel multiple component gas infrared ray sensor are discussed. The optical gas sensor, which has infrared radiation impulses input and electric single output, is composed of narrow band light filter, optical taper and pyroelectric detector array. An infrared gas analyzer with multiple component gas tested synchronously consists of the sensor, single middle infrared source, single gas cell and computer data acquire system. As compared with sensor in other infrared gas analyzer, it has many merits such as novel structure, strong anti\|oscillate performance and low cost. Different gas in different measurement area can be analyzed quantitatively by replacing optical filter module easily.
文摘Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alternative technology like MCT(HgCdTe)was the technology choice of the 2^(nd) generation because of its high quantum efficiency.In the paper,measurements on the QWIP technology will be presented and a comparison with alternative technology will be done.
文摘There is a growing interest in the Open Ag community to use inexpensive sensors controlled by open-source software to measure plant height and plant canopy temperature of agricultural crops. Plant height and plant canopy temperature are key indicators of plant health. This research study reports on an ongoing research initiative to test a compact and inexpensive mobile sensor to measure plant height and plant canopy temperature. The system is controlled by open source software and hardware. The specific objectives for this study were to analyze the relationship between plant height and plant canopy temperature of soybeans (Glycine max L.) measured with the mobile system and to analyze the spatial correlation of the plant height and plant canopy temperature measurements. Data were collected in a soybean plot in 2018 and 2019. Descriptive statistics, Pearson correlation, and geostatistical techniques were used to evaluate the data. A negative statistically significant (p ≤ 0.05) relationship was observed between the plant height and the plant canopy temperature measurements (r = −0.54, 2018;r = −0.37, 2019). Also, both parameters were spatially correlated;however, plant height had a greater spatial continuity than plant canopy temperature. Furthermore, similar patterns were observed for the in-field variability of the plant height and plant temperature maps derived via kriging. Similarities in plant height and plant canopy temperatures were observed from one year to the next, suggesting that the sensor technologies could be used as a historical record for monitoring growth patterns in soybean fields. The sensors and techniques used in this study can be easily adapted to other crops, thus providing two important layers for monitoring plant growth and potentially plant stress.
基金Supported by the National Natural Science Foundation of China(61803234,61751307)the Natural Science Foundation of Shandong Province,China(ZR2017BF026)+1 种基金China Postdoctoral Science Foundation(2018M632691)Research Fund for the Taishan Scholar Project of Shandong Province of China.
文摘Training sample selection is widely accepted as an important step in developing a near-infrared(NIR) spectroscopic model. For industrial applications, the initial training dataset is usually selected empirically. This process is time-consuming, and updating the structure of the modeling dataset online is difficult. Considering the static structure of the modeling dataset, the performance of the established NIR model could be degraded in the online process. To cope with this issue, an active training sample selection and updating strategy is proposed in this work. The advantage of the proposed approach is that it can select suitable modeling samples automatically according to the process information. Moreover, it can adjust model coefficients in a timely manner and avoid arbitrary updating effectively. The effectiveness of the proposed method is validated by applying the method to an industrial gasoline blending process.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50105002) and Fund of Harbin Institute of Technology (Grant No.HIT.2001.14).
文摘Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.
文摘In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation micro- structures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.
基金Supported by the National Nature Science Foundation of China(No.41527901)the Provincial Key Research and Development Program of Shandong,China(No.2019JZZY010417)the Special Program of Shandong Province for Qingdao Pilot National Laboratory of Marine Science and Technology(No.2021QNLM020002).
文摘The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.
基金supported by the National Key Research and Development Program(2021YFA1201602)the NSFC(62004017)+2 种基金the Fundamental Research Funds for the Central Universities(2021CDJQY-019)J.C.also want to acknowledge the supporting from the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyjmsxmX0746)the Scientific Research Project of Chongqing Education Committee(Grant No.KJQN202100522).
文摘Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing.Herein,we propose a selfpowered and highly sensitive tribo-label-sensor(TLS)for accurate label identification,positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer.The sensing mechanism,device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment.As the results,TLS delivers 6 times higher signal magnitude than traditional one.Moreover,TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness.This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.
文摘The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process. In this study, the keyhole and weld pool were observed and measured under different levels of welding current by using the near infrared sensing technology and the charge coupled device (CCD) sensing system. The shapes and relative position of weld pool and keyhole under different conditions were compared and analyzed. The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.
文摘In order to reach the objective of intelligence and energy saving for university classroom lighting, energy saving lighting control system in university classroom based on wireless sensor network is designed, including design of sensor node and sink, as well as corresponding development of control program and upper-computer software. The system sets single-chip Ameg16 as control center, realizes communication between nodes via nRF24L01 wireless transceiver module, and realizes communication between sink and upper computer via w5100 wireless internet module. It perceives illumination intensity via photoconductor, detects the human body position via infrared pyroelectric sensor, and places the sensor node on the lamp, so the light can be controlled according to position of human body and current illumination intensity, which can realize energy saving to a large extent on condition that lighting requirement is satisfied. The system has low cost, and there is no need to change the original lighting circuit. The light can be turned off by hand, and when multi-media are used for the class, light can keep off even it is dim. In addition, this system has the function of automatic fault report, which is convenient for property maintenance.
基金the financial support of Ministry of Research Technology and Higher Education Republic of Indonesia with contract number:095/K3/KM/2015.
文摘Purpose-The production of glycerol derivatives by the esterification process is subject to many constraints related to the yield of the production target and the lack of process efficiency.An accurate monitoring and controlling of the process can improve production yield and efficiency.The purpose of this paper is to propose a real-time optimization(RTO)using gradient adaptive selection and classification from infrared sensor measurement to cover various disturbances and uncertainties in the reactor.Design/methodology/approach-The integration of the esterification process optimization using self-optimization(SO)was developed with classification process was combined with necessary condition optimum(NCO)as gradient adaptive selection,supported with laboratory scaled medium wavelength infrared(mid-IR)sensors,and measured the proposed optimization system indicator in the batch process.Business Process Modeling and Notation(BPMN 2.0)was built to describe the tasks of SO workflow in collaboration with NCO as an abstraction for the conceptual phase.Next,Stateflow modeling was deployed to simulate the three states of gradient-based adaptive control combined with support vector machine(SVM)classification and Arduino microcontroller for implementation.Findings-This new method shows that the real-time optimization responsiveness of control increased product yield up to 13 percent,lower error measurement with percentage error 1.11 percent,reduced the process duration up to 22 minutes,with an effective range of stirrer rotation set between 300 and 400 rpm and final temperature between 200 and 210℃ which was more efficient,as it consumed less energy.Research limitations/implications-In this research the authors just have an experiment for the esterification process using glycerol,but as a development concept of RTO,it would be possible to apply for another chemical reaction or system.Practical implications-This research introduces new development of an RTO approach to optimal control and as such marks the starting point for more research of its properties.As the methodology is generic,it can be applied to different optimization problems for a batch system in chemical industries.Originality/value-The paper presented is original as it presents the first application of adaptive selection based on the gradient value of mid-IR sensor data,applied to the real-time determining control state by classification with the SVM algorithm for esterification process control to increase the efficiency.
文摘To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.