The aim of the study is to seek a simple and inexpensive method to prevent the permeability rise of unsaturated clay caused by evaporation process and to raise its imperviousness. Taking Chengdu clay as an example, fo...The aim of the study is to seek a simple and inexpensive method to prevent the permeability rise of unsaturated clay caused by evaporation process and to raise its imperviousness. Taking Chengdu clay as an example, four treatment schemes were tried. Na 2CO 3 could reduce conspicuously the permeability of the saturated clay, but could not limit the permeability rise in the alternate wetting and drying process. NaOH had a similar effect to Na 2CO 3. NaCl could not only decrease the saturated hydraulic conductivity, but could also effectively contain the permeability rise caused by evaporation. CH 3COONa had a similar effect to NaCl. The mechanism of Na 2CO 3, NaOH, NaCl and CH 3COONa decreasing the saturated hydraulic conductivity of the clay is that Na + transformed Ca montmorillonites in the original clay into Na montmorillonites and the transformation reduces the sizes of effective pores and the effective porosity of the clay.展开更多
AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high conc...AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C(PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression.CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members.展开更多
Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture conte...Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h.展开更多
Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations ...Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations properly. Among a large number of elastoplastic constitutive models developed over the last several decades, constitutive models based on generalized plasticity have been successfully utilized in modeling the mechanical behavior of various soils. This paper attempts to present a review of the most recent developments of generalized plasticity models for geotechnical problems. After a brief review of generalized plasticity theories and constitutive models, limitations of the original Pastor-Zienkiewicz model in practical application are summarized. Afterwards, recent achievements in the generalized plasticity models for both saturated and unsaturated soils and their applicability are analyzed, and a general approach for modification of generalized plasticity models is highlighted.展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
This paper presents the realization of two-way coupling of the unsaturated-saturated flow interactions of the SWAT2000 and MODFLOW96 models on the basis of the integrated surface/groundwater model SWATMOD99, and its a...This paper presents the realization of two-way coupling of the unsaturated-saturated flow interactions of the SWAT2000 and MODFLOW96 models on the basis of the integrated surface/groundwater model SWATMOD99, and its application in Hetao Irrigation District (HID), Inner Mongolia, China. Major revisions and enhancements were made to the SWAT2000 and MODFLOW models for simulating the detailed hydrologic budget and coupled unsaturated and saturated interactions, and irrigation canal hydrology for the HID. The simulation results of seasonal groundwater recharge to and evaporate from the shallow groundwater, and the annual water budget over the district are presented and discussed. The results implied the necessity of two-way coupling of the unsaturated-saturated interactions when groundwater is shallow, and the feasibility of making comprehensive use of the information coming from both the surface water and groundwater models to make a more physically-based assessment of the coupled interactions.展开更多
The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flo...The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models.展开更多
A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to ...A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table.and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regar.ding the Dirichlet boundary condition, the Neumann boundary condition, the a.tmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-lD, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.展开更多
Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on see...Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on seepage characteristics was analyzed. The results show that: (1) Under the same axial stress (12 MPa), the permeability of different lithologic samples increases in the order: gangue 〈 mudstone 〈 sandstone 〈 limestone. The permeability of gangue is 3 magnitudes lower than that of limestone. The absolute value of the non-Darcy coefficient β increases in the order: limestone 〈 sandstone 〈 mudstone 〈 gangue. The non-Darcy coefficient β of limestone, which is positive, is 5 magnitudes lower than that of gangue. (2) With increasing axial stress, the permeability of saturated broken sandstone decreases, and the absolute value of the non-Darcy coefficient β increases. After the axial stress exceeds 12 MPa, the curves of permeability and non-Darcy coefficient β all tend to be stable. (3) With increasing Talbol power exponent, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. (4) With increasing loading, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. When the loading rate is 0.5 kN/s, the non-Darcy coefficient β is positive.展开更多
The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific pa...The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given.展开更多
Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree ...Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree versus time are investigated. The results show that the specimens with similar curves of saturation degree versus time have nearly identical mechanical behavior. In particular, the uniform specimens should be chosen within the lower equilibrium saturation degree because steady test results are presented. Further, the conclusion is verified by the repeated test. Thus, the method for distinguishing the uniform unsaturated specimen is obtained. In the light of the method, an improved test process is proposed. The uniform specimens should be chosen by this method under the specific matric suction, and then shear tests are carried out on the chosen unsaturated specimen. Namely, initial value of unsaturated soil is not zero matric suction but a specific suction.展开更多
The mathematical model of migration of total petroleum hydrocarbons in unsaturated media was described,including convection,molecular diffusion,mechanical dispersion and adsorption,and chemical reactions.By finite ele...The mathematical model of migration of total petroleum hydrocarbons in unsaturated media was described,including convection,molecular diffusion,mechanical dispersion and adsorption,and chemical reactions.By finite element method,a numerical model of evaluating petroleum hydrocarbon migration through contaminated soils was created and applied to the environmental investigations of a relocated mechanical factory in Shanghai.The model consisted of three compacted soil layers:plain fill,sandy silt and silty clay.The results showed that pollutants in the sandy silt traveled faster than that in the plain fill and silty clay.The same decreasing trend of migration velocity was observed in all of the three soil layers.After 180 d,the concentrations of pollutants in the sandy silt can be as low as 40% of the original maximum,while its counterpart in the silty clay is 64%.展开更多
In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-...In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.展开更多
Tight sandstone gas(hereafter"tight gas")has become a subject of unconventional gas exploration globally.The large-scale development and use of tight gas resources in the USA,in particular,facilitated the ra...Tight sandstone gas(hereafter"tight gas")has become a subject of unconventional gas exploration globally.The large-scale development and use of tight gas resources in the USA,in particular,facilitated the rapid rebound of natural gas production in the USA,in addition to driving the rapid development of tight gas worldwide.In the eastern Ordos Basin,the Upper Paleozoic feature includes multiple layers of gas,a shallow depth,and notable potential for exploration and development.However,the reservoirs in the area are relatively tight,exhibit strong heterogeneity,and possess a complex micropore structure,thus restricting the eff ective economic development of oil and gas.Thus,research on the primary parameters controlling pore throat structure and the seepage capability of low-permeability reservoirs will be beneficial for the effcient exploration and development of natural gas in the eastern Ordos Basin.The parameters of reservoir porosity and percolation ability,as well as permeability,were analyzed using systematic sampling of the of the Upper Paleozoic Benxi,Taiyuan,and Shanxi Formations in the eastern Ordos Basin,constant-rate mercury injection experiments,nuclear magnetic resonance analysis,and gas–water-phase experimental studies.The results indicate that reservoir porosity is controlled by the effective pore volume and number,whereas permeability is controlled by the largest throat radius,rather than the average.The effective pore volume controls the movable fluid saturation,while reservoir percolation capability is controlled by the effective pore volume,irreducible water saturation,and size of the gas–water two-phase seepage zone.展开更多
A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct fea...A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.展开更多
To determine and map the subsurface conditions of a dam, a 2D electrical resistivity tomography study was carried out within the two flanks of Zaria dam at Shika. This was done to ascertain if the variations in the vo...To determine and map the subsurface conditions of a dam, a 2D electrical resistivity tomography study was carried out within the two flanks of Zaria dam at Shika. This was done to ascertain if the variations in the volume of water content in the dam is due to an anomalous seepage beneath the subsurface or seasonal effects. On the basis of the interpretation of the acquired data, various zones of relatively uniform resistivity values were mapped and identified. The first zone is characterized by moderate resistivity values of 150 - 600 ohm-m. It represents unsaturated topsoil with thicknesses varying from 1 - 4.5 m. The second (intermediate depth) resistivity zone, with values ranging from 5 - 100 ohm-m and thickness varying from 3.5 - 10 m, represents a silt clay layer with high moisture content. The third resistivity zone represents fairly weathered granite and is characterized by relatively high resistivity values ranging from 700 - 6000 ohm-m. The available borehole log data correlated well with the pseudo-sections in relation to the obtained resistivity values and depth. Zones of relatively low resistivity within the bedrock are interpreted to represent potential seepage pathways. Hence, this geophysical method can be successfully used to delineate and map these seepage pathways within the subsurface of the earth dam.展开更多
Building on the idea that molecules in liquid phase associate into multi-molecular complexes through covalent bonds, the present article focuses on the possible structures of these complexes. Saturation at atomic leve...Building on the idea that molecules in liquid phase associate into multi-molecular complexes through covalent bonds, the present article focuses on the possible structures of these complexes. Saturation at atomic level is a key concept to understand where connections occur and how far molecules aggregate. A periodic table for liquids with saturation levels is proposed, in agreement with the even-odd rule, for both organic and inorganic elements. With the aim at reaching the most stable complexes, meaning no other chemical reactions can occur in the liquid phase, the structure of complexes resulting from liquefaction of about 30 molecules is devised. The article concludes that complexes in liquids generally assume rounded shapes of an intermediate size between gas and solid structures. It shows that saturation and covalent bonds alone can explain the specific properties of liquids. While it is generally acknowledged that molecular energy in gases and solids are respectively linear kinetic and vibratory, we suggest that rotatory energy dominates in liquids.展开更多
Background Oils are important sources of energy in pig diets.The combination of oils with different degree of saturation contributes to improve the utilization efficiency of the mixed oils and may reduce the cost of o...Background Oils are important sources of energy in pig diets.The combination of oils with different degree of saturation contributes to improve the utilization efficiency of the mixed oils and may reduce the cost of oil supplemented.An experiment was conducted to evaluate the effects of oils with different degree of saturation on the fat digestibility and corresponding additivity and bacterial community in growing pigs.Methods Eighteen crossbred(Duroc×Landrace×Yorkshire)barrows(initial body weight:29.3±2.8 kg)were surgically fitted with a T-cannula in the distal ileum.The experimental diets included a fat-free basal diet and 5 oil-added diets.The 5 oil-added diets were formulated by adding 6%oil with different ratio of unsaturated to saturated fatty acids(U:S)to the basal diet.The 5 oils were palm oil(U:S=1.2),canola oil(U:S=12.0),and palm oil and canola oil were mixed in different proportions to prepare a combination of U:S of 2.5,3.5 and 4.5,respectively.Results The apparent and standardized ileal digestibility(AID and SID)of fat and fatty acids increased linearly(P<0.05)as the U:S of dietary oils increased except for SID of fat and C18:2.The AID and SID of fat and fatty acids differed among the dietary treatments(P<0.05)except for SID of unsaturated fatty acids(UFA)and C18:2.Fitted one-slope broken-line analyses for the SID of fat,saturated fatty acids(SFA)and UFA indicated that the breakpoint for U:S of oil was 4.14(R^(2)=0.89,P<0.01),2.91(R^(2)=0.98,P<0.01)and 3.84(R^(2)=0.85,P<0.01),respectively.The determined SID of fat,C18:1,C18:2 and UFA in the mixtures was not different from the calculated SID of fat,C18:1,C18:2 and UFA.However,the determined SID of C16:0,C18:0 and SFA in the mixtures were greater than the calculated SID values(P<0.05).The abundance of Romboutsia and Turicibacter in pigs fed diet containing palm oil was greater than that in rapeseed oil treatment group,and the two bacteria were negatively correlated with SID of C16:0,C18:0 and SFA(P<0.05).Conclusions The optimal U:S for improving the utilization efficiency of mixed oil was 4.14.The SID of fat and UFA for palm oil and canola oil were additive in growing pigs,whereas the SID of SFA in the mixture of two oils was greater than the sum of the values of pure oils.Differences in fat digestibility caused by oils differing in degree of saturation has a significant impact on bacterial community in the foregut.展开更多
The effects on finishing pigs(80-100 kg BW) fed diets supplemented with oil sources containing different ratios of unsaturated to saturated fatty acids(UFA:SFA ratio) were evaluated in 15 barrows and15 gilts(Duroc ...The effects on finishing pigs(80-100 kg BW) fed diets supplemented with oil sources containing different ratios of unsaturated to saturated fatty acids(UFA:SFA ratio) were evaluated in 15 barrows and15 gilts(Duroc × Large White × Landrace). Three experimental diets were evaluated using a randomized complete block design, with broken rice, soybean meal and rice bran as the main feedstuffs in the control diet. Diets 2 and 3 consisted of the control diet supplemented with 3% oil, with UFA:SFA ratios of 2.5:1 and 5:1, respectively. Overall, there was no significant difference(P> 0.05) found in the average daily gain(ADG) of the pigs fed the treatment diets; however, the pigs fed the control diet and diet 3 had better(P < 0.05) feed conversion ratios(FCR) than the pigs fed diet 2. The pigs fed diets 2 and 3, which were supplemented with oil at UFA:SFA ratios of 2.5:1 and 5:1, had greater(P < 0.05) average daily feed intakes(ADFI) than the pigs in the control group. Additionally, it was found that the gender of the pigs had an effect(P < 0.05) on the FCR. Interaction effects between the experimental diets and the gender of the pigs(P < 0.05) were found in the ADFI and FCR. There were no significance differences(P > 0.05)among the treatment groups with regard to the carcass quality of the pigs; however, it was found that the gilts had greater(P < 0.01) loin eye areas than the barrows fed diets 2 and 3 and the loin eye area of pig fed diet 2 was the largest(P < 0.05); In the case of the meat quality parameters, it was clearly found that the pigs fed the control diet had a greater(P < 0.05) lightness(L~*) in the meat colour, and the lowest cooking loss was found in the pigs fed the diet supplemented with fat containing the UFA:SFA ratio of 5:1.Overall, the dietary treatment did not significantly affect the drip loss, thawing loss and shear force of the pork. In conclusion, the supplementation of oil with UFA:SFA ratios of 2.5:1 and 5:1 has the potential to improve pork quality.展开更多
This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular ...This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular tunnel lining is modeled as an infinite Flügge cylindrical shell.The separation of variables method is used to solve the motion equation of the shell,and the wave equation of the soil is solved using the Helmholtz decomposition theorem.A dynamic matrix reflecting the wave vectors of soil layers is established using the transfer matrix method.Based on boundary conditions,the tunnel-soil model is coupled using the transformation method of plane wave functions and cylindrical wave functions.The proposed model is validated by comparison with existing tunnel models,and the effects of saturation and the layered properties of soil on the dynamic response of a layered tunnel-soil system is demonstrated via case studies.展开更多
文摘The aim of the study is to seek a simple and inexpensive method to prevent the permeability rise of unsaturated clay caused by evaporation process and to raise its imperviousness. Taking Chengdu clay as an example, four treatment schemes were tried. Na 2CO 3 could reduce conspicuously the permeability of the saturated clay, but could not limit the permeability rise in the alternate wetting and drying process. NaOH had a similar effect to Na 2CO 3. NaCl could not only decrease the saturated hydraulic conductivity, but could also effectively contain the permeability rise caused by evaporation. CH 3COONa had a similar effect to NaCl. The mechanism of Na 2CO 3, NaOH, NaCl and CH 3COONa decreasing the saturated hydraulic conductivity of the clay is that Na + transformed Ca montmorillonites in the original clay into Na montmorillonites and the transformation reduces the sizes of effective pores and the effective porosity of the clay.
文摘AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C(PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression.CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members.
基金sponsored by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19E080007,No.LY19E080008)the Natural Science Foundation of China(Grant No.51578356)the Science and Technology Fund of Yunnan Provincial Communication Department of China(Grant No.2010(A)06-b)。
文摘Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h.
基金supported by the Central Public Welfare Fund of China (Grant No.Y710005)the China Scholarship Council (CSC)
文摘Soil undergoes both elastic and plastic deformations under different loading conditions. A relatively accurate constitutive model of soil behaviors should be capable of predicting the elastic and plastic deformations properly. Among a large number of elastoplastic constitutive models developed over the last several decades, constitutive models based on generalized plasticity have been successfully utilized in modeling the mechanical behavior of various soils. This paper attempts to present a review of the most recent developments of generalized plasticity models for geotechnical problems. After a brief review of generalized plasticity theories and constitutive models, limitations of the original Pastor-Zienkiewicz model in practical application are summarized. Afterwards, recent achievements in the generalized plasticity models for both saturated and unsaturated soils and their applicability are analyzed, and a general approach for modification of generalized plasticity models is highlighted.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
基金supported by the National Basic Research Program of China (2010CB951002)the Knowledge Innovation Project of Chinese Academy of Sciences (KZXC2-YW-BR-12)
文摘This paper presents the realization of two-way coupling of the unsaturated-saturated flow interactions of the SWAT2000 and MODFLOW96 models on the basis of the integrated surface/groundwater model SWATMOD99, and its application in Hetao Irrigation District (HID), Inner Mongolia, China. Major revisions and enhancements were made to the SWAT2000 and MODFLOW models for simulating the detailed hydrologic budget and coupled unsaturated and saturated interactions, and irrigation canal hydrology for the HID. The simulation results of seasonal groundwater recharge to and evaporate from the shallow groundwater, and the annual water budget over the district are presented and discussed. The results implied the necessity of two-way coupling of the unsaturated-saturated interactions when groundwater is shallow, and the feasibility of making comprehensive use of the information coming from both the surface water and groundwater models to make a more physically-based assessment of the coupled interactions.
文摘The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models.
基金supported by the National Basic Research Program of China (Grant No. 2010CB428802)Scholarship Award for Excellent Doctoral Students granted by Ministry of Education+1 种基金the Fundamental Research Funds for the Central Universitiesthe Ph. D. Candidates' Self-research Program of Wuhan University in 2008
文摘A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table.and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regar.ding the Dirichlet boundary condition, the Neumann boundary condition, the a.tmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-lD, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.
基金provided by the National Basic Research Program of China (No.2013CB227900)the Ordinary University Graduate Student Research Innovation Project in Jiangsu Province for 2014 (No.KYLX_1370)the National Natural Science Foundation of China (Nos.11502229 and 51404266)
文摘Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on seepage characteristics was analyzed. The results show that: (1) Under the same axial stress (12 MPa), the permeability of different lithologic samples increases in the order: gangue 〈 mudstone 〈 sandstone 〈 limestone. The permeability of gangue is 3 magnitudes lower than that of limestone. The absolute value of the non-Darcy coefficient β increases in the order: limestone 〈 sandstone 〈 mudstone 〈 gangue. The non-Darcy coefficient β of limestone, which is positive, is 5 magnitudes lower than that of gangue. (2) With increasing axial stress, the permeability of saturated broken sandstone decreases, and the absolute value of the non-Darcy coefficient β increases. After the axial stress exceeds 12 MPa, the curves of permeability and non-Darcy coefficient β all tend to be stable. (3) With increasing Talbol power exponent, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. (4) With increasing loading, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. When the loading rate is 0.5 kN/s, the non-Darcy coefficient β is positive.
基金Supported by the National Natural Science Foundation of China(50779030,50879044,2008BAB29B03)the National Defenses Bureau(838)
文摘The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given.
基金Project(51179023) supported by the National Natural Science Foundation of China
文摘Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree versus time are investigated. The results show that the specimens with similar curves of saturation degree versus time have nearly identical mechanical behavior. In particular, the uniform specimens should be chosen within the lower equilibrium saturation degree because steady test results are presented. Further, the conclusion is verified by the repeated test. Thus, the method for distinguishing the uniform unsaturated specimen is obtained. In the light of the method, an improved test process is proposed. The uniform specimens should be chosen by this method under the specific matric suction, and then shear tests are carried out on the chosen unsaturated specimen. Namely, initial value of unsaturated soil is not zero matric suction but a specific suction.
文摘The mathematical model of migration of total petroleum hydrocarbons in unsaturated media was described,including convection,molecular diffusion,mechanical dispersion and adsorption,and chemical reactions.By finite element method,a numerical model of evaluating petroleum hydrocarbon migration through contaminated soils was created and applied to the environmental investigations of a relocated mechanical factory in Shanghai.The model consisted of three compacted soil layers:plain fill,sandy silt and silty clay.The results showed that pollutants in the sandy silt traveled faster than that in the plain fill and silty clay.The same decreasing trend of migration velocity was observed in all of the three soil layers.After 180 d,the concentrations of pollutants in the sandy silt can be as low as 40% of the original maximum,while its counterpart in the silty clay is 64%.
基金the National Natural Science Foundation of China(Grant No.41390451,41172101)the National Key Research Project of China(No.2016YFC0601003).
文摘In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.
基金supported by the National Natural Science Foundation of China(Grants Nos.41390451 and 41172101)the National Key Research Project of China(No.2016YFC0601003)
文摘Tight sandstone gas(hereafter"tight gas")has become a subject of unconventional gas exploration globally.The large-scale development and use of tight gas resources in the USA,in particular,facilitated the rapid rebound of natural gas production in the USA,in addition to driving the rapid development of tight gas worldwide.In the eastern Ordos Basin,the Upper Paleozoic feature includes multiple layers of gas,a shallow depth,and notable potential for exploration and development.However,the reservoirs in the area are relatively tight,exhibit strong heterogeneity,and possess a complex micropore structure,thus restricting the eff ective economic development of oil and gas.Thus,research on the primary parameters controlling pore throat structure and the seepage capability of low-permeability reservoirs will be beneficial for the effcient exploration and development of natural gas in the eastern Ordos Basin.The parameters of reservoir porosity and percolation ability,as well as permeability,were analyzed using systematic sampling of the of the Upper Paleozoic Benxi,Taiyuan,and Shanxi Formations in the eastern Ordos Basin,constant-rate mercury injection experiments,nuclear magnetic resonance analysis,and gas–water-phase experimental studies.The results indicate that reservoir porosity is controlled by the effective pore volume and number,whereas permeability is controlled by the largest throat radius,rather than the average.The effective pore volume controls the movable fluid saturation,while reservoir percolation capability is controlled by the effective pore volume,irreducible water saturation,and size of the gas–water two-phase seepage zone.
基金The project supported by the National Natural Science Foundation of China(19832010,50278012,10272027)the National Key Basic Research and Development Program(973 Program,2002CB412709)
文摘A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.
文摘To determine and map the subsurface conditions of a dam, a 2D electrical resistivity tomography study was carried out within the two flanks of Zaria dam at Shika. This was done to ascertain if the variations in the volume of water content in the dam is due to an anomalous seepage beneath the subsurface or seasonal effects. On the basis of the interpretation of the acquired data, various zones of relatively uniform resistivity values were mapped and identified. The first zone is characterized by moderate resistivity values of 150 - 600 ohm-m. It represents unsaturated topsoil with thicknesses varying from 1 - 4.5 m. The second (intermediate depth) resistivity zone, with values ranging from 5 - 100 ohm-m and thickness varying from 3.5 - 10 m, represents a silt clay layer with high moisture content. The third resistivity zone represents fairly weathered granite and is characterized by relatively high resistivity values ranging from 700 - 6000 ohm-m. The available borehole log data correlated well with the pseudo-sections in relation to the obtained resistivity values and depth. Zones of relatively low resistivity within the bedrock are interpreted to represent potential seepage pathways. Hence, this geophysical method can be successfully used to delineate and map these seepage pathways within the subsurface of the earth dam.
文摘Building on the idea that molecules in liquid phase associate into multi-molecular complexes through covalent bonds, the present article focuses on the possible structures of these complexes. Saturation at atomic level is a key concept to understand where connections occur and how far molecules aggregate. A periodic table for liquids with saturation levels is proposed, in agreement with the even-odd rule, for both organic and inorganic elements. With the aim at reaching the most stable complexes, meaning no other chemical reactions can occur in the liquid phase, the structure of complexes resulting from liquefaction of about 30 molecules is devised. The article concludes that complexes in liquids generally assume rounded shapes of an intermediate size between gas and solid structures. It shows that saturation and covalent bonds alone can explain the specific properties of liquids. While it is generally acknowledged that molecular energy in gases and solids are respectively linear kinetic and vibratory, we suggest that rotatory energy dominates in liquids.
基金supported by National Natural Science Foundation of China(31972597 and 32302793)。
文摘Background Oils are important sources of energy in pig diets.The combination of oils with different degree of saturation contributes to improve the utilization efficiency of the mixed oils and may reduce the cost of oil supplemented.An experiment was conducted to evaluate the effects of oils with different degree of saturation on the fat digestibility and corresponding additivity and bacterial community in growing pigs.Methods Eighteen crossbred(Duroc×Landrace×Yorkshire)barrows(initial body weight:29.3±2.8 kg)were surgically fitted with a T-cannula in the distal ileum.The experimental diets included a fat-free basal diet and 5 oil-added diets.The 5 oil-added diets were formulated by adding 6%oil with different ratio of unsaturated to saturated fatty acids(U:S)to the basal diet.The 5 oils were palm oil(U:S=1.2),canola oil(U:S=12.0),and palm oil and canola oil were mixed in different proportions to prepare a combination of U:S of 2.5,3.5 and 4.5,respectively.Results The apparent and standardized ileal digestibility(AID and SID)of fat and fatty acids increased linearly(P<0.05)as the U:S of dietary oils increased except for SID of fat and C18:2.The AID and SID of fat and fatty acids differed among the dietary treatments(P<0.05)except for SID of unsaturated fatty acids(UFA)and C18:2.Fitted one-slope broken-line analyses for the SID of fat,saturated fatty acids(SFA)and UFA indicated that the breakpoint for U:S of oil was 4.14(R^(2)=0.89,P<0.01),2.91(R^(2)=0.98,P<0.01)and 3.84(R^(2)=0.85,P<0.01),respectively.The determined SID of fat,C18:1,C18:2 and UFA in the mixtures was not different from the calculated SID of fat,C18:1,C18:2 and UFA.However,the determined SID of C16:0,C18:0 and SFA in the mixtures were greater than the calculated SID values(P<0.05).The abundance of Romboutsia and Turicibacter in pigs fed diet containing palm oil was greater than that in rapeseed oil treatment group,and the two bacteria were negatively correlated with SID of C16:0,C18:0 and SFA(P<0.05).Conclusions The optimal U:S for improving the utilization efficiency of mixed oil was 4.14.The SID of fat and UFA for palm oil and canola oil were additive in growing pigs,whereas the SID of SFA in the mixture of two oils was greater than the sum of the values of pure oils.Differences in fat digestibility caused by oils differing in degree of saturation has a significant impact on bacterial community in the foregut.
基金supported by Division of Research Administration, Naresuan University
文摘The effects on finishing pigs(80-100 kg BW) fed diets supplemented with oil sources containing different ratios of unsaturated to saturated fatty acids(UFA:SFA ratio) were evaluated in 15 barrows and15 gilts(Duroc × Large White × Landrace). Three experimental diets were evaluated using a randomized complete block design, with broken rice, soybean meal and rice bran as the main feedstuffs in the control diet. Diets 2 and 3 consisted of the control diet supplemented with 3% oil, with UFA:SFA ratios of 2.5:1 and 5:1, respectively. Overall, there was no significant difference(P> 0.05) found in the average daily gain(ADG) of the pigs fed the treatment diets; however, the pigs fed the control diet and diet 3 had better(P < 0.05) feed conversion ratios(FCR) than the pigs fed diet 2. The pigs fed diets 2 and 3, which were supplemented with oil at UFA:SFA ratios of 2.5:1 and 5:1, had greater(P < 0.05) average daily feed intakes(ADFI) than the pigs in the control group. Additionally, it was found that the gender of the pigs had an effect(P < 0.05) on the FCR. Interaction effects between the experimental diets and the gender of the pigs(P < 0.05) were found in the ADFI and FCR. There were no significance differences(P > 0.05)among the treatment groups with regard to the carcass quality of the pigs; however, it was found that the gilts had greater(P < 0.01) loin eye areas than the barrows fed diets 2 and 3 and the loin eye area of pig fed diet 2 was the largest(P < 0.05); In the case of the meat quality parameters, it was clearly found that the pigs fed the control diet had a greater(P < 0.05) lightness(L~*) in the meat colour, and the lowest cooking loss was found in the pigs fed the diet supplemented with fat containing the UFA:SFA ratio of 5:1.Overall, the dietary treatment did not significantly affect the drip loss, thawing loss and shear force of the pork. In conclusion, the supplementation of oil with UFA:SFA ratios of 2.5:1 and 5:1 has the potential to improve pork quality.
基金Supported by:National Natural Science Foundation of China under Grant No.51808405。
文摘This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular tunnel lining is modeled as an infinite Flügge cylindrical shell.The separation of variables method is used to solve the motion equation of the shell,and the wave equation of the soil is solved using the Helmholtz decomposition theorem.A dynamic matrix reflecting the wave vectors of soil layers is established using the transfer matrix method.Based on boundary conditions,the tunnel-soil model is coupled using the transformation method of plane wave functions and cylindrical wave functions.The proposed model is validated by comparison with existing tunnel models,and the effects of saturation and the layered properties of soil on the dynamic response of a layered tunnel-soil system is demonstrated via case studies.