The mathematical model of migration of total petroleum hydrocarbons in unsaturated media was described,including convection,molecular diffusion,mechanical dispersion and adsorption,and chemical reactions.By finite ele...The mathematical model of migration of total petroleum hydrocarbons in unsaturated media was described,including convection,molecular diffusion,mechanical dispersion and adsorption,and chemical reactions.By finite element method,a numerical model of evaluating petroleum hydrocarbon migration through contaminated soils was created and applied to the environmental investigations of a relocated mechanical factory in Shanghai.The model consisted of three compacted soil layers:plain fill,sandy silt and silty clay.The results showed that pollutants in the sandy silt traveled faster than that in the plain fill and silty clay.The same decreasing trend of migration velocity was observed in all of the three soil layers.After 180 d,the concentrations of pollutants in the sandy silt can be as low as 40% of the original maximum,while its counterpart in the silty clay is 64%.展开更多
This study addressed the problem of low drainage efficiency or even no drainage in subsurface drainage systems buried in saturated-unsaturated zones above the water table.An indoor experiment on infiltration under pon...This study addressed the problem of low drainage efficiency or even no drainage in subsurface drainage systems buried in saturated-unsaturated zones above the water table.An indoor experiment on infiltration under ponded conditions in a homogeneous soil column was performed to study the effects of soil texture on the soil wetting front morphology,soil infiltration rate,drainage efficiency of the subsurface drainage pipe,vertical distribution of soil water content and salinity along the soil column.The results showed that the drainage process of subsurface drainage pipes above the water table was quite different from that of subsurface drainage pipes below the water table.When a subsurface drainage pipe was located in sandy soil,the migration of soil water toward the bottom of the drainage pipe was significant,and the water could not be discharged into the pipe.When the drainage pipe was located in loamy clay,the movement of soil water towards the bottom of the pipe was retarded,and the water could be discharged into the pipe.During the drainage process,the drainage of the pipe can produce nonequilibrium flow in the soil,and the continuity of the nonequilibrium flow can be affected by the hydraulic conductivity of the soil above the pipe,which can result in discontinuous drainage and low drainage efficiency.The water holding capacity,permeability and aeration of soil are important factors that affect the drainage under unsaturated conditions.Eliminating the hysteresis effect and capillary barrier around the drainage pipe and adjusting water holding capacity,the permeability and aeration of soil structure through a new subsurface drainage structure may enhance the drainage efficiency of subsurface drainage pipes in saturated-unsaturated zones.展开更多
With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably re...With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.展开更多
In order to simulate the unsteady seepage in soil slopes under water level rise condition, including water seepage and air seepage, and to investigate the influence of the capillary pressure on the slope safety coeffi...In order to simulate the unsteady seepage in soil slopes under water level rise condition, including water seepage and air seepage, and to investigate the influence of the capillary pressure on the slope safety coefficient, the water-air two-phase flow model was used and its solving method and definition condition were given. By the two-phase flow model, the pore air and pore water seepage of a soil slope under steady seepage and water level rise conditions were shown, and the slope stability in different cases was analyzed from the simulation results. We find that under water level rise condition, the pore air pressure in the unsaturated zone increased evidently and the capillary pressure should be considered while the pore air pressure can be neglected in slope stability analysis.展开更多
A stochastic model for saturated-unsaturated flow is developed based on the combination of the Karhunen-Loeve expansion of the input random soil properties with a perturbation method. The saturated hydraulic conductiv...A stochastic model for saturated-unsaturated flow is developed based on the combination of the Karhunen-Loeve expansion of the input random soil properties with a perturbation method. The saturated hydraulic conductivity k_ s (x) is assumed to be log-normal random functions, expressed by f(x). f(x) is decomposed as infinite series in a set of orthogonal normal random variables by the Karhunen-Loeve (KL) expansion and the pressure head is expand as polynomial chaos with the same set of orthogonal random variables. With these expansions, the stochastic saturated-unsaturated flow equation and the corresponding initial and boundary conditions are represented by a series of deterministic partial differential equations which can be solved subsequently by a suitable numerical method. Some examples are given to show the reliability and efficiency of the proposed method.展开更多
A numerical model physically based on a formulation of water, vapor, and heat transport in saturated- unsaturated soils coupled with a lower atmosphere boundary layer modelling is presented. The inputs required for t...A numerical model physically based on a formulation of water, vapor, and heat transport in saturated- unsaturated soils coupled with a lower atmosphere boundary layer modelling is presented. The inputs required for the computer simulation are weather data, soil thermal and hydraulic properties. The coupled numerical model is tested separately with the experimental result and analytical solution because of the scarcity of suitable analytical solution for the coupled problem. The agreements of the numerical model with the experimental data and the analytiCal solution are excellent. Numerical experiments are performed to analyse the effects of weather conditions, soil water conductivity K, thermal vapor diffusivity DTV, and isothermal vapor conductivity DHV on the evaporation rate from the soil surface. When the soil is wet, the evaporation rate is more sensitive to the input atmospheric conditions. This is the situation for high ground water table and just after rainfall. The accuracy of the measurement of air humidity has stronger effect on evaporation rate than the roughness length. When the soil is dry enough,the soil water conductivity dominates evaporation rate. Neglecting thermal vapor diffusivity and isothermal vapor conductivity introduces an error less than 2. 5% in evaporation rate.展开更多
文摘The mathematical model of migration of total petroleum hydrocarbons in unsaturated media was described,including convection,molecular diffusion,mechanical dispersion and adsorption,and chemical reactions.By finite element method,a numerical model of evaluating petroleum hydrocarbon migration through contaminated soils was created and applied to the environmental investigations of a relocated mechanical factory in Shanghai.The model consisted of three compacted soil layers:plain fill,sandy silt and silty clay.The results showed that pollutants in the sandy silt traveled faster than that in the plain fill and silty clay.The same decreasing trend of migration velocity was observed in all of the three soil layers.After 180 d,the concentrations of pollutants in the sandy silt can be as low as 40% of the original maximum,while its counterpart in the silty clay is 64%.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51790533,No.41361071,No.51669029).
文摘This study addressed the problem of low drainage efficiency or even no drainage in subsurface drainage systems buried in saturated-unsaturated zones above the water table.An indoor experiment on infiltration under ponded conditions in a homogeneous soil column was performed to study the effects of soil texture on the soil wetting front morphology,soil infiltration rate,drainage efficiency of the subsurface drainage pipe,vertical distribution of soil water content and salinity along the soil column.The results showed that the drainage process of subsurface drainage pipes above the water table was quite different from that of subsurface drainage pipes below the water table.When a subsurface drainage pipe was located in sandy soil,the migration of soil water toward the bottom of the drainage pipe was significant,and the water could not be discharged into the pipe.When the drainage pipe was located in loamy clay,the movement of soil water towards the bottom of the pipe was retarded,and the water could be discharged into the pipe.During the drainage process,the drainage of the pipe can produce nonequilibrium flow in the soil,and the continuity of the nonequilibrium flow can be affected by the hydraulic conductivity of the soil above the pipe,which can result in discontinuous drainage and low drainage efficiency.The water holding capacity,permeability and aeration of soil are important factors that affect the drainage under unsaturated conditions.Eliminating the hysteresis effect and capillary barrier around the drainage pipe and adjusting water holding capacity,the permeability and aeration of soil structure through a new subsurface drainage structure may enhance the drainage efficiency of subsurface drainage pipes in saturated-unsaturated zones.
基金Supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No.KJCX2-SW-L1-4)the Major State Basic Research Development Program of China (Grant No.2002CB412703)
文摘With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.
基金Supported by the China-Austria Scientific and Technological Cooperative Project of National Science and Technology Ministry of China (CN 01/2007)
文摘In order to simulate the unsteady seepage in soil slopes under water level rise condition, including water seepage and air seepage, and to investigate the influence of the capillary pressure on the slope safety coefficient, the water-air two-phase flow model was used and its solving method and definition condition were given. By the two-phase flow model, the pore air and pore water seepage of a soil slope under steady seepage and water level rise conditions were shown, and the slope stability in different cases was analyzed from the simulation results. We find that under water level rise condition, the pore air pressure in the unsaturated zone increased evidently and the capillary pressure should be considered while the pore air pressure can be neglected in slope stability analysis.
文摘A stochastic model for saturated-unsaturated flow is developed based on the combination of the Karhunen-Loeve expansion of the input random soil properties with a perturbation method. The saturated hydraulic conductivity k_ s (x) is assumed to be log-normal random functions, expressed by f(x). f(x) is decomposed as infinite series in a set of orthogonal normal random variables by the Karhunen-Loeve (KL) expansion and the pressure head is expand as polynomial chaos with the same set of orthogonal random variables. With these expansions, the stochastic saturated-unsaturated flow equation and the corresponding initial and boundary conditions are represented by a series of deterministic partial differential equations which can be solved subsequently by a suitable numerical method. Some examples are given to show the reliability and efficiency of the proposed method.
文摘A numerical model physically based on a formulation of water, vapor, and heat transport in saturated- unsaturated soils coupled with a lower atmosphere boundary layer modelling is presented. The inputs required for the computer simulation are weather data, soil thermal and hydraulic properties. The coupled numerical model is tested separately with the experimental result and analytical solution because of the scarcity of suitable analytical solution for the coupled problem. The agreements of the numerical model with the experimental data and the analytiCal solution are excellent. Numerical experiments are performed to analyse the effects of weather conditions, soil water conductivity K, thermal vapor diffusivity DTV, and isothermal vapor conductivity DHV on the evaporation rate from the soil surface. When the soil is wet, the evaporation rate is more sensitive to the input atmospheric conditions. This is the situation for high ground water table and just after rainfall. The accuracy of the measurement of air humidity has stronger effect on evaporation rate than the roughness length. When the soil is dry enough,the soil water conductivity dominates evaporation rate. Neglecting thermal vapor diffusivity and isothermal vapor conductivity introduces an error less than 2. 5% in evaporation rate.