A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with th...A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with the conventional distillation scheme, C5 foaming agent was directly separated at the top of the original isopentane or pentane column in the novel scheme, instead of first refining the two isomerides to high purities and then mixing them into final products. This improvement reduced the difficulty of the separation and avoided meaningless exergy loss caused by re-mixing, which finally contributed to an energy-efficient design by a big margin. Moreover, the column grand composite curves(CGCCs)were used to modify all distillation columns, indicating that there is potential to improve the energy efficiency further. Therefore, double-effect, or heat-integrated distillation was also adopted. Energy and exergy analyses were then conducted to evaluate the effectiveness of the proposed scheme for the purpose of energy saving. The simulation results of the conventional distillation scheme were in agreement with its on-site counterpart. Analyses showed that the novel heat-integrated scheme reduced hot utility by 27.12%,, cold utility by 24.49%,, and total exergy loss by 23.95%,.展开更多
Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were per...Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.展开更多
Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produc...Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.展开更多
[Objective] The study aimed at evaluating the ability to save energy and reduce CO2 emission in China's cement industry. [Method] Based on long-term energy alternative planning system software (LEAP), "LEAP of Ch...[Objective] The study aimed at evaluating the ability to save energy and reduce CO2 emission in China's cement industry. [Method] Based on long-term energy alternative planning system software (LEAP), "LEAP of China's cement industry" model was established to simulate energy conservation and emission reduction in China's cement industry from 2010 to 2040 in different technologic situations. E ResultJ To save ener- gy and reduce CO2 emissions, new dry process kiln has priority over other technologies or measures, followed by equipment enlargement, mechani- cal shaft kiln, power generation system based on waste heat, as well as high-efficiency and energy-saving grinding technology, and new prepara- tion technology. If all the advanced technologies and measures are adopted, energy consumption and C02 emissions can be reduced by about 40.76% and 42.97% respectively. [ Condusion] LEAP of model is suitable for analyzing energy saving and emission reducing in China's cement industry and other industrial fields.展开更多
[Objective] The study aimed to discuss the factors influencing the application of shaping biomass energy in the NHJHe absorption re- frigeration system. [ Method] In the NHJHe absorption refrigeration system, the ther...[Objective] The study aimed to discuss the factors influencing the application of shaping biomass energy in the NHJHe absorption re- frigeration system. [ Method] In the NHJHe absorption refrigeration system, the thermodynamic analysis of semi-gasification furnace based on sec- tional combustion technology and absorption refrigeration system was performed. [ Result] Biomass could burn cleanly and efficiently in the semi- gasification furnace, which can reduce the environmental pollution caused by the combustion of coal and other fossil fuels. The heating power of the furnace for the absorption refrigeration system could not be too high, so biomass energy and other low-grade energy can be used as heat sources, which opens up a new way for the utilization of biomass energy. [ Conclusion] Biomass energy was applied successfully in the absorption refrigera- tion system.展开更多
Information asymmetry phenomenon and the differences between the main body's earning targets,which are existing in the building energy saving field,have made the game behaviors of its economic activities become in...Information asymmetry phenomenon and the differences between the main body's earning targets,which are existing in the building energy saving field,have made the game behaviors of its economic activities become inevitable.There are strategies choice between government departments and the developers,when the building energy saving work is carried out under the government control.Based on the players based assumptions,the path of player's behavior strategy choices is analyzed,expected revenue models are established and mixed Nash equilibrium is obtained in this paper.Based on the analysis results,the incentive strategy enlightenment could be concluded that it is particularly important to design the scientific incentive system for developers to develop energy-saving buildings reasonably and for the government to implement effective control;the role of informal system in encouraging developers to develop energy-saving buildings should not be ignored.展开更多
This study focuses on the heat transfer characteristics of the evaporation terminal,the cool distribute unit(CDU)and refrigerant flow distribution of a water cooled multi-spilit heat pipe system(MSHPS)used in data cen...This study focuses on the heat transfer characteristics of the evaporation terminal,the cool distribute unit(CDU)and refrigerant flow distribution of a water cooled multi-spilit heat pipe system(MSHPS)used in data center.The finite time thermodynamic analysis,the exergy method and the software SIMULINK was employed to build the simulation model of the combined system.The results show that the IT servers should concentrate on arranging at the location below 1.3 m.The CDU has a heat transfer of about 74 J in a period of 6 s.And the optimum flow rate of the CDU is 0.82 kg/s.The flow distribution characteristic of a CDU which connect 2 heat pipe evaporator terminals of 6 kW was calculated,and the working fluid is R22.Then the free cooling time,part time free cooling and energy saving potential in major cities of China were analysised.The energy saving potential is from 61%to 25%.The results are of great significance for the operational control and practical application of a MSHPS and other pipe-net systems.展开更多
Papermaking industry is a high-energy-consuming industry with long supply chain.The growth of paper product demand further intensifies the need of energy consumption.Energy saving through the full supply chain has bec...Papermaking industry is a high-energy-consuming industry with long supply chain.The growth of paper product demand further intensifies the need of energy consumption.Energy saving through the full supply chain has become a focal point for long-term sustainable development of the papermaking industry.This paper reviews the advances in life cycle analysis for the papermaking industry in recent years.All the stages from the full supply chain are involved to give a panoramic overview of the papermaking industry.The object of this paper is to provide scientific basis to industry and decision-makers with profound understanding of the energy consumption and energy saving potential in a life cycle perspective.展开更多
Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,c...Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts.展开更多
A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to d...A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to determine the equilibrium compositions and equilibrium temperatures,respectively.Both cases were treated as optimization problems (non-linear programming formulation).The GAMS 23.1 software and the CONOPT2 solver were used in the resolution of the proposed problems.The hydrogen and syngas production were favored at high temperatures and low pressures,and thus the oxygen to methane molar ratio (O 2 /CH 4) was the dominant factor to control the composition of the product formed.For O 2 /CH 4 molar ratios higher than 0.5,the oxidative reforming of methane presented autothermal behavior in the case of either utilizing O 2 or air as oxidant agent,but oxidation reaction with air possessed the advantage of avoiding peak temperatures in the system,due to change in the heat capacity of the system caused by the addition of nitrogen.The calculated results were compared with previously published experimental and simulated data with a good agreement between them.展开更多
The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy anal...The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively.展开更多
Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not eno...Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not enough to convince a homeowner to pay the incremental cost associated with the energy-efficiency measure. The objective of this work is to develop a methodology for the economic evaluation of residential energy-efficiency measures that can simplify the economic analysis for the homeowner while taking into consideration all factors associated with the purchase, ownership, and selling of the house with the energy-efficiency measure. The methodology accounts for direct and indirect economic parameters associated to an energy-efficiency measure;direct parameters such as the mortgage interest and fuel price escalation rate, and indirect parameters such as savings account interest and marginal income tax rate. The methodology also considers different cases based on the service life of the energy-efficiency measure and loss of efficiency through a derating factor. To estimate the market value, the methodology uses the future energy cost savings instead of the cost of the EEM. Results from the methodology offer to homeowner annual net savings and net assets. The annual net savings gives the homeowner a measure of the annual positive cash flow that can be obtained from an energy-efficiency project;but more important, the net assets offer a measure of the added net wealth. To simplify and increase the use of the methodology by homeowners, the methodology has been implemented in an Excel tool that can be downloaded from the TxAIRE’s website.展开更多
Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same co...Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.展开更多
It is necessary for China to refocus its energy conservation effort from the industrial sector (field) to all three sectors simultaneously, i.e. industry, construction and transport. In addition, it should also make s...It is necessary for China to refocus its energy conservation effort from the industrial sector (field) to all three sectors simultaneously, i.e. industry, construction and transport. In addition, it should also make significant effort for conserving energy on general technical equipment that are used in large quantities and for a variety of applications. Therefore, there is a need to integrate industrial, construction and transport sectors, i.e. the integration between key technologies and widely used technologies, between hard and soft management, between energy-saving technologies and comprehensive resource utilization technologies. According to estimates, if China’s energy consuming sectors adopted appropriate energy-saving technologies, total energy-savings (using 2010 as the baseline) would be 200 million, 450 million, 650 million and 800 million tons of standard coal in 2015, 2020, 2025 and 2030, respectively.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
Crude distillation unit(CDU)is regarded as the main energy consumer in the entire refinery process.In this paper,the process simulation software and the energy management software are used to simulate the flowsheet an...Crude distillation unit(CDU)is regarded as the main energy consumer in the entire refinery process.In this paper,the process simulation software and the energy management software are used to simulate the flowsheet and analyze the energy consumption,respectively.Stream data obtained from an existing CDU are applicable in the pinch analysis.To reduce the amount of cross-pinch heat transfer,three approaches of resequencing,repiping,and adding heat exchangers are adopted.Compared with the existing CDU,the results demonstrate that the inlet temperature of the furnace can be increased by 25.4℃,the amount of hot and cold utilities can be reduced by 15.1%and 19.6%,respectively.The economic evaluation indicates that the operating cost is saved by 8×106$/a,and the payback period is about 9 months.展开更多
Diesel hydrotreating unit(DHT)is an integral part of the refinery,and its energy-saving optimization is of great significance to the enterprise.In this paper,process simulation software and energy management software ...Diesel hydrotreating unit(DHT)is an integral part of the refinery,and its energy-saving optimization is of great significance to the enterprise.In this paper,process simulation software and energy management software are used to simulate the flowsheet and analyze the energy consumption,respectively.Stream data obtained from an existing DHT are applied in the pinch analysis for retrofitting the heat exchanger network(HEN)to achieve maximum energy utilization by using pinch analysis.Since DHT is constrained by pressure,the pressure factor is considered in the process of retrofitting.The results show that the amount of cross-pinch heat transfer is reduced,the inlet temperature of the furnace is increased by 55℃,and the amount of hot and cold utilities can be reduced by 70.25%and 50.16%,respectively.The economic evaluation indicates that the operating cost is saved by 4.39×10^(6)$/a,and the payback period is about 2 months.展开更多
The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning s...The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning system for fresh air handling can be saved effectively when the exhaust air energy could be recovered to preheat or precool the fresh air.Considering the install locations requirements on field,the pump-driven heat pipes(PHP)were developed as heat recovery ventilators(HRVs)and used in an existing experiment building in Beijing Urban.The thermal performance of the PHP HRVs was tested in real operation time periods under winter running mode.Both the power and heat consumption of the modular air handling units with and without HRVs were monitored and obtained,as well as the hourly power and heat consumption.The energy savings of HRVs were analyzed.The results indicate that the PHP HRVs can work steadily and meet the energy recovery need well.The temperature effectiveness of the HRVs can be kept from 60%to 70%.The test total energy saving rate was 24.48%,and the average hourly heat consumption reduced by 28.54%.The daily energy consumption can be saved by 118 kWh,and the energy savings can reach to 9440 kWh for a whole winter.展开更多
Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniou...Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniously" match each other; this resulted in a higher output of the motor, lower efficiency, and higher energy consumption of the pumping units. A new six-bar linkage pumping unit is presented according to moment-changing theory. It allows to adjust automatically following the changes of polished rod load, and achieves small crank shaft curve fluctuation. The new pumping unit improves motor efficiency, reduces motor output power, and saves energy. According to the design scheme, kinematics and kinetics models of the new six-bar linkages pumping unit are built up. An optimum design on the main peoCormance parameters and functional analysis were peoCormed.展开更多
基金Supported by the Program of Introduction of Talents of Discipline to Universities(B06006)
文摘A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with the conventional distillation scheme, C5 foaming agent was directly separated at the top of the original isopentane or pentane column in the novel scheme, instead of first refining the two isomerides to high purities and then mixing them into final products. This improvement reduced the difficulty of the separation and avoided meaningless exergy loss caused by re-mixing, which finally contributed to an energy-efficient design by a big margin. Moreover, the column grand composite curves(CGCCs)were used to modify all distillation columns, indicating that there is potential to improve the energy efficiency further. Therefore, double-effect, or heat-integrated distillation was also adopted. Energy and exergy analyses were then conducted to evaluate the effectiveness of the proposed scheme for the purpose of energy saving. The simulation results of the conventional distillation scheme were in agreement with its on-site counterpart. Analyses showed that the novel heat-integrated scheme reduced hot utility by 27.12%,, cold utility by 24.49%,, and total exergy loss by 23.95%,.
基金supported by University of Kashan(Grant No.158426/5)
文摘Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.
基金Supported by Tianjin Institute of Urban Construction(03046)
文摘Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.
基金Supported by Special Project for Developing National Major Scientific Instruments and Equipments (2011YQ060111)Scientific Research Project of Environmental Protection in Commonweal Industry(201009032)
文摘[Objective] The study aimed at evaluating the ability to save energy and reduce CO2 emission in China's cement industry. [Method] Based on long-term energy alternative planning system software (LEAP), "LEAP of China's cement industry" model was established to simulate energy conservation and emission reduction in China's cement industry from 2010 to 2040 in different technologic situations. E ResultJ To save ener- gy and reduce CO2 emissions, new dry process kiln has priority over other technologies or measures, followed by equipment enlargement, mechani- cal shaft kiln, power generation system based on waste heat, as well as high-efficiency and energy-saving grinding technology, and new prepara- tion technology. If all the advanced technologies and measures are adopted, energy consumption and C02 emissions can be reduced by about 40.76% and 42.97% respectively. [ Condusion] LEAP of model is suitable for analyzing energy saving and emission reducing in China's cement industry and other industrial fields.
基金Supported by Scientific and Technological Project of Educational Commission of Henan Province,China(2009B480006)
文摘[Objective] The study aimed to discuss the factors influencing the application of shaping biomass energy in the NHJHe absorption re- frigeration system. [ Method] In the NHJHe absorption refrigeration system, the thermodynamic analysis of semi-gasification furnace based on sec- tional combustion technology and absorption refrigeration system was performed. [ Result] Biomass could burn cleanly and efficiently in the semi- gasification furnace, which can reduce the environmental pollution caused by the combustion of coal and other fossil fuels. The heating power of the furnace for the absorption refrigeration system could not be too high, so biomass energy and other low-grade energy can be used as heat sources, which opens up a new way for the utilization of biomass energy. [ Conclusion] Biomass energy was applied successfully in the absorption refrigera- tion system.
基金supported by the National Natural Science Foundation of China(Grant No.71171141)
文摘Information asymmetry phenomenon and the differences between the main body's earning targets,which are existing in the building energy saving field,have made the game behaviors of its economic activities become inevitable.There are strategies choice between government departments and the developers,when the building energy saving work is carried out under the government control.Based on the players based assumptions,the path of player's behavior strategy choices is analyzed,expected revenue models are established and mixed Nash equilibrium is obtained in this paper.Based on the analysis results,the incentive strategy enlightenment could be concluded that it is particularly important to design the scientific incentive system for developers to develop energy-saving buildings reasonably and for the government to implement effective control;the role of informal system in encouraging developers to develop energy-saving buildings should not be ignored.
基金Thanks for the support of Hunan postdoctoral fund(Number:198514)。
文摘This study focuses on the heat transfer characteristics of the evaporation terminal,the cool distribute unit(CDU)and refrigerant flow distribution of a water cooled multi-spilit heat pipe system(MSHPS)used in data center.The finite time thermodynamic analysis,the exergy method and the software SIMULINK was employed to build the simulation model of the combined system.The results show that the IT servers should concentrate on arranging at the location below 1.3 m.The CDU has a heat transfer of about 74 J in a period of 6 s.And the optimum flow rate of the CDU is 0.82 kg/s.The flow distribution characteristic of a CDU which connect 2 heat pipe evaporator terminals of 6 kW was calculated,and the working fluid is R22.Then the free cooling time,part time free cooling and energy saving potential in major cities of China were analysised.The energy saving potential is from 61%to 25%.The results are of great significance for the operational control and practical application of a MSHPS and other pipe-net systems.
基金Supported by the State Key Laboratory of Pulp and Paper Engineering(201830)the Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology(GC201809)+1 种基金Fundamental Research Funds for the Central Universities(2017BQ023)the Science and Technology Project of Guangdong Province(2015B010110004,2015A010104004,2013B010406002)
文摘Papermaking industry is a high-energy-consuming industry with long supply chain.The growth of paper product demand further intensifies the need of energy consumption.Energy saving through the full supply chain has become a focal point for long-term sustainable development of the papermaking industry.This paper reviews the advances in life cycle analysis for the papermaking industry in recent years.All the stages from the full supply chain are involved to give a panoramic overview of the papermaking industry.The object of this paper is to provide scientific basis to industry and decision-makers with profound understanding of the energy consumption and energy saving potential in a life cycle perspective.
基金funded by the National Research Foundation(NRF)Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)Program
文摘Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts.
基金supported by CAPES-Coordenacāo de Aperfeic oamento de Pessoal de Ensino Superior-Brazil and CNPq-Conselho Nacional de Desen-volvimento Científico e Tecnológico-Brazil
文摘A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to determine the equilibrium compositions and equilibrium temperatures,respectively.Both cases were treated as optimization problems (non-linear programming formulation).The GAMS 23.1 software and the CONOPT2 solver were used in the resolution of the proposed problems.The hydrogen and syngas production were favored at high temperatures and low pressures,and thus the oxygen to methane molar ratio (O 2 /CH 4) was the dominant factor to control the composition of the product formed.For O 2 /CH 4 molar ratios higher than 0.5,the oxidative reforming of methane presented autothermal behavior in the case of either utilizing O 2 or air as oxidant agent,but oxidation reaction with air possessed the advantage of avoiding peak temperatures in the system,due to change in the heat capacity of the system caused by the addition of nitrogen.The calculated results were compared with previously published experimental and simulated data with a good agreement between them.
基金国家重点基础研究发展计划项目(973项目)(2009CB219801)国家杰出青年科学基金(51025624)+2 种基金国家科技支撑计划项目(2011BAA04803-2). The National Basic Research Program of China (973 Program) (2009CB219801) The Funds for Creative Research Groups of China (51025624) Chinese Key Technology R&D Program (2011BAA04B03-2).
基金This research is supported by the Croatian Science Foundation under the project IP-2018-01-3739,CEEPUS network CIII-HR-0108,European Regional Development Fund under the grant KK.01.1.1.01.0009(DATACROSS)project CEKOM under the grant KK.01.2.2.03.0004,CEI project“COVIDAi”(305.6019-20)University of Rijeka Scientific Grants uniri-tehnic-18-275-1447,uniritehnic-18-18-1146 and uniri-tehnic-18-14.
文摘The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively.
文摘Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not enough to convince a homeowner to pay the incremental cost associated with the energy-efficiency measure. The objective of this work is to develop a methodology for the economic evaluation of residential energy-efficiency measures that can simplify the economic analysis for the homeowner while taking into consideration all factors associated with the purchase, ownership, and selling of the house with the energy-efficiency measure. The methodology accounts for direct and indirect economic parameters associated to an energy-efficiency measure;direct parameters such as the mortgage interest and fuel price escalation rate, and indirect parameters such as savings account interest and marginal income tax rate. The methodology also considers different cases based on the service life of the energy-efficiency measure and loss of efficiency through a derating factor. To estimate the market value, the methodology uses the future energy cost savings instead of the cost of the EEM. Results from the methodology offer to homeowner annual net savings and net assets. The annual net savings gives the homeowner a measure of the annual positive cash flow that can be obtained from an energy-efficiency project;but more important, the net assets offer a measure of the added net wealth. To simplify and increase the use of the methodology by homeowners, the methodology has been implemented in an Excel tool that can be downloaded from the TxAIRE’s website.
基金Project(2006BAJ03A10) supported by the National Key Technologies R & D Program of China
文摘Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.
文摘It is necessary for China to refocus its energy conservation effort from the industrial sector (field) to all three sectors simultaneously, i.e. industry, construction and transport. In addition, it should also make significant effort for conserving energy on general technical equipment that are used in large quantities and for a variety of applications. Therefore, there is a need to integrate industrial, construction and transport sectors, i.e. the integration between key technologies and widely used technologies, between hard and soft management, between energy-saving technologies and comprehensive resource utilization technologies. According to estimates, if China’s energy consuming sectors adopted appropriate energy-saving technologies, total energy-savings (using 2010 as the baseline) would be 200 million, 450 million, 650 million and 800 million tons of standard coal in 2015, 2020, 2025 and 2030, respectively.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
基金This work was supported by the National Natural Science Foundation of China(Grant:21878333).
文摘Crude distillation unit(CDU)is regarded as the main energy consumer in the entire refinery process.In this paper,the process simulation software and the energy management software are used to simulate the flowsheet and analyze the energy consumption,respectively.Stream data obtained from an existing CDU are applicable in the pinch analysis.To reduce the amount of cross-pinch heat transfer,three approaches of resequencing,repiping,and adding heat exchangers are adopted.Compared with the existing CDU,the results demonstrate that the inlet temperature of the furnace can be increased by 25.4℃,the amount of hot and cold utilities can be reduced by 15.1%and 19.6%,respectively.The economic evaluation indicates that the operating cost is saved by 8×106$/a,and the payback period is about 9 months.
基金This work was supported by the National Natural Science Foundation of China(Grant:21878333).
文摘Diesel hydrotreating unit(DHT)is an integral part of the refinery,and its energy-saving optimization is of great significance to the enterprise.In this paper,process simulation software and energy management software are used to simulate the flowsheet and analyze the energy consumption,respectively.Stream data obtained from an existing DHT are applied in the pinch analysis for retrofitting the heat exchanger network(HEN)to achieve maximum energy utilization by using pinch analysis.Since DHT is constrained by pressure,the pressure factor is considered in the process of retrofitting.The results show that the amount of cross-pinch heat transfer is reduced,the inlet temperature of the furnace is increased by 55℃,and the amount of hot and cold utilities can be reduced by 70.25%and 50.16%,respectively.The economic evaluation indicates that the operating cost is saved by 4.39×10^(6)$/a,and the payback period is about 2 months.
基金supported by the Project of Science and Technology Program of Beijing Municipal Chao Yang District(CYSF2005,Zhun Li,http://www.bjchy.gov.cn/dynamic/notice/8a24fe83722fa7180172360a3f46044c.html).
文摘The building energy consumption is an important part among the total society energy consumption,in which the energy consumption for air conditioning occupies almost 70%.The energy consumption of the air conditioning system for fresh air handling can be saved effectively when the exhaust air energy could be recovered to preheat or precool the fresh air.Considering the install locations requirements on field,the pump-driven heat pipes(PHP)were developed as heat recovery ventilators(HRVs)and used in an existing experiment building in Beijing Urban.The thermal performance of the PHP HRVs was tested in real operation time periods under winter running mode.Both the power and heat consumption of the modular air handling units with and without HRVs were monitored and obtained,as well as the hourly power and heat consumption.The energy savings of HRVs were analyzed.The results indicate that the PHP HRVs can work steadily and meet the energy recovery need well.The temperature effectiveness of the HRVs can be kept from 60%to 70%.The test total energy saving rate was 24.48%,and the average hourly heat consumption reduced by 28.54%.The daily energy consumption can be saved by 118 kWh,and the energy savings can reach to 9440 kWh for a whole winter.
文摘Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniously" match each other; this resulted in a higher output of the motor, lower efficiency, and higher energy consumption of the pumping units. A new six-bar linkage pumping unit is presented according to moment-changing theory. It allows to adjust automatically following the changes of polished rod load, and achieves small crank shaft curve fluctuation. The new pumping unit improves motor efficiency, reduces motor output power, and saves energy. According to the design scheme, kinematics and kinetics models of the new six-bar linkages pumping unit are built up. An optimum design on the main peoCormance parameters and functional analysis were peoCormed.