The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the ...The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.展开更多
A new analytical chip formation model is proposed for micro-end-milling operations. The model calculates an instantaneous uncut chip thickness by considering the combination of exact trochoidal trajectory of the tool ...A new analytical chip formation model is proposed for micro-end-milling operations. The model calculates an instantaneous uncut chip thickness by considering the combination of exact trochoidal trajectory of the tool tip and tool run-out, while the simplified circular trajectory and the neglected run-out create negligible change in conventional-scale chip formation models. Newton-Raphson iterative method is employed during the calculation to obtain quadratic convergence. The proposed approach allows the calculation of instantaneous uncut chip thickness to be done accurately and rapidly, and the prediction accuracy of this model is also verified by comparing the simulation results to experimental cutting forces.展开更多
Inconel 718,a nickel,chrome and iron alloy,has special advantages,such as high-temperature strength,thermal resistance and corrosion resistance,which facilitate wide usage in the aerospace industry,especially in the h...Inconel 718,a nickel,chrome and iron alloy,has special advantages,such as high-temperature strength,thermal resistance and corrosion resistance,which facilitate wide usage in the aerospace industry,especially in the hot sections of gas turbine engines.However,machining this alloy is correlated closely with the material’s inherent properties such as excellent combination of strength,hardness and toughness,low thermal conductivity and the tendency to adhere to cutting tools.This nickel alloy also contains inclusions of hard abrasive carbide particles that lead to work-hardening of the workpiece material and thus abrasive wear of the cutting tool.That is,the machining of Inconel 718 is always influenced by high mechanical and thermal loads.This article reviews the chip formation mechanism of Inconel 718.One of the main characteristics in machining of Inconel 718 is that it will produce serrated or segmented chips in a wide range of cutting speeds and feeds.Existing studies show that the chip serration or segmentation by shear localization affects the machined surface integrity,and also contributes to the chip’s evacuation and the automation of machining operations.Thus,research conclusion indicates that the serrated or segmented chip phenomenon is desirable in reducing the level of cutting force,and detailed analysis of models and approaches to understand the chip formation mechanism of Inconel 718 is vital for machining this alloy effectively and efficiently.Therefore,this article presents some summaries on the models and approaches on the chip formation in machining of Inconel 718.展开更多
High speed milling experiments using nitrogen-oil-mist as the cutting medium were carried out to investigate the characteristics of chip formation for Ti-6Al-4V alloy.Within the range of conditions employed(cutting sp...High speed milling experiments using nitrogen-oil-mist as the cutting medium were carried out to investigate the characteristics of chip formation for Ti-6Al-4V alloy.Within the range of conditions employed(cutting speed,vc=190-300 m/min;cutting depth of axial,ap=5,7 mm),saw-tooth chips were produced in these experiments.During the macro and micro analysis of the Ti-6Al-4V chips,an optical microscope and a scanning electron microscope(SEM)were used to study the microstructure and the morphology of the chips,and the X-ray photoelectron spectroscopy(XPS)was employed for chemical analysis.Comparisons were made to study the influence of different cutting media(nitrogen-oil-mist,air-oil-mist and dry cutting condition)on chip formation.Results indicate that cutting media have significant effects on chip formation.Nitrogen-oil-mist is more suitable for improving the contact condition at chip-tool interface and increasing the tool life in high speed milling of Ti-6Al-4V alloy than air-oil-mist and dry cutting.展开更多
A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride (PCBN) is described. An arbitra...A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride (PCBN) is described. An arbitrary Lagrangian Eulerian (ALE) method has been adopted which does not need any chip separation criteria as opposed to the traditional Lagrangian approach. Through FE simulations temperature and stresses distributions are presented that could be helpful in predicting tool life and improving process parameters. The results show that high temperatures are generated along the tool rake face as compared to the shear zone temperatures due to high thermal conductivity of PCBN tools.展开更多
A two-dimensional coupled thermo-mechanical model is used to simulate the progress of milling mild carbon steel with continuous chip formation. Deformation of the workpiece is treated as elastic-plastic with isotropic...A two-dimensional coupled thermo-mechanical model is used to simulate the progress of milling mild carbon steel with continuous chip formation. Deformation of the workpiece is treated as elastic-plastic with isotropic strain-hardening. An analysis of the properties of temperature-dependent materials is employed. The chip separation is achieved by the adaptive remeshing strategy module found in commercial finite element code Marc. In order to increase the computational efficiency and accuracy, we implement a customized subroutine into the Marc code to define local refinement at the tool tip. Measurements are taken of the shape of the chip, the temperature, stress, strain and strain-rate fields. The values of the cutting forces obtained from the simulations agree well with those obtained from the cutting experiments.展开更多
The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple ...The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple scaling-down of it. This down-sizing involves new phenomena in the chip formation, such as the minimum chip thickness below which no chip is formed. This paper presents a review of the current state of the art in this field from an experimental and a numerical point of view. A 2D finite element model is then developed to study the influence of the depth of cut on the chip formation. After the model validation in macro-cutting, it highlights the phenomena reported in literature and allows to perform a minimum chip thickness estimation.展开更多
There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on...There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting.This paper presents a model of large saw-tooth chip through applying finite element simulation method,which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip.In the meantime,a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel2.25Cr-lMo-0.25V.The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters,which can verify the validity of the established model.The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools.In the meanwhile,the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction.This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition,as well as analyzes the production mechanism of the large chip in the macro and micro conditions.Therefore,the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.展开更多
In this study, molecular dynamics simulations were carried out to study the effect of machining velocities on the mechanism of chip formation in nano-metric copper. A wide range of cutting velocities was performed fro...In this study, molecular dynamics simulations were carried out to study the effect of machining velocities on the mechanism of chip formation in nano-metric copper. A wide range of cutting velocities was performed from 10 to 2000 m/s, and the microstructure's evolution from a crystalline state to an amorphous state was studied. At the low machining velocity, dislocations were generated from the surface in front of the tool, and the immobile dislocation deduced by the cross slip of dislocation was observed. At the high machining velocity, no crystal dislocation nucleated, but instead disorder atoms were found near the tool. Temperature near the tool region increased with the increasing machining velocities, and the temperature had an important effect on the phase transition of the crystal structure.展开更多
Abstract Predictive models for machining operations have been significantly improved through numerous methods in recent decades. This study proposed a 3D finite element modeling (3D FEM) approach for the micro end-m...Abstract Predictive models for machining operations have been significantly improved through numerous methods in recent decades. This study proposed a 3D finite element modeling (3D FEM) approach for the micro end-milling orAl6061-T6. Finite element (FE) simulations were performed under different cutting conditions to obtain realistic numerical predictions of chip flow, burr formation, and cutting forces. FE modeling displayed notable advantages, such as capability to easily handle any type of tool geometry and any side effect on chip formation, including thermal aspect and material property changes. The proposed 3D FE model considers the effects ofmiU helix angle and cutting edge radius on the chip. The prediction capability of the FE model was validated by comparing numerical model and experimental test results. Burr dimension trends were correlated with force profile shapes. However, the FE predictions overestimated the real force magnitude. This overestimation indicates that the model requires further development.展开更多
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu...To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.展开更多
Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising app...Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.展开更多
文摘The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.
基金supported by National Natural Science Foundation of China (No.50575134)
文摘A new analytical chip formation model is proposed for micro-end-milling operations. The model calculates an instantaneous uncut chip thickness by considering the combination of exact trochoidal trajectory of the tool tip and tool run-out, while the simplified circular trajectory and the neglected run-out create negligible change in conventional-scale chip formation models. Newton-Raphson iterative method is employed during the calculation to obtain quadratic convergence. The proposed approach allows the calculation of instantaneous uncut chip thickness to be done accurately and rapidly, and the prediction accuracy of this model is also verified by comparing the simulation results to experimental cutting forces.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975481 and 51675440)Fundamental Research Funds for the Central Universities(Grant No.3102020ZX004).
文摘Inconel 718,a nickel,chrome and iron alloy,has special advantages,such as high-temperature strength,thermal resistance and corrosion resistance,which facilitate wide usage in the aerospace industry,especially in the hot sections of gas turbine engines.However,machining this alloy is correlated closely with the material’s inherent properties such as excellent combination of strength,hardness and toughness,low thermal conductivity and the tendency to adhere to cutting tools.This nickel alloy also contains inclusions of hard abrasive carbide particles that lead to work-hardening of the workpiece material and thus abrasive wear of the cutting tool.That is,the machining of Inconel 718 is always influenced by high mechanical and thermal loads.This article reviews the chip formation mechanism of Inconel 718.One of the main characteristics in machining of Inconel 718 is that it will produce serrated or segmented chips in a wide range of cutting speeds and feeds.Existing studies show that the chip serration or segmentation by shear localization affects the machined surface integrity,and also contributes to the chip’s evacuation and the automation of machining operations.Thus,research conclusion indicates that the serrated or segmented chip phenomenon is desirable in reducing the level of cutting force,and detailed analysis of models and approaches to understand the chip formation mechanism of Inconel 718 is vital for machining this alloy effectively and efficiently.Therefore,this article presents some summaries on the models and approaches on the chip formation in machining of Inconel 718.
基金the National Natural Science Foundation of China (Grant No. 50175051)
文摘High speed milling experiments using nitrogen-oil-mist as the cutting medium were carried out to investigate the characteristics of chip formation for Ti-6Al-4V alloy.Within the range of conditions employed(cutting speed,vc=190-300 m/min;cutting depth of axial,ap=5,7 mm),saw-tooth chips were produced in these experiments.During the macro and micro analysis of the Ti-6Al-4V chips,an optical microscope and a scanning electron microscope(SEM)were used to study the microstructure and the morphology of the chips,and the X-ray photoelectron spectroscopy(XPS)was employed for chemical analysis.Comparisons were made to study the influence of different cutting media(nitrogen-oil-mist,air-oil-mist and dry cutting condition)on chip formation.Results indicate that cutting media have significant effects on chip formation.Nitrogen-oil-mist is more suitable for improving the contact condition at chip-tool interface and increasing the tool life in high speed milling of Ti-6Al-4V alloy than air-oil-mist and dry cutting.
基金This project is supported by National Natural Science Foundation of China (No.50505003).
文摘A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride (PCBN) is described. An arbitrary Lagrangian Eulerian (ALE) method has been adopted which does not need any chip separation criteria as opposed to the traditional Lagrangian approach. Through FE simulations temperature and stresses distributions are presented that could be helpful in predicting tool life and improving process parameters. The results show that high temperatures are generated along the tool rake face as compared to the shear zone temperatures due to high thermal conductivity of PCBN tools.
文摘A two-dimensional coupled thermo-mechanical model is used to simulate the progress of milling mild carbon steel with continuous chip formation. Deformation of the workpiece is treated as elastic-plastic with isotropic strain-hardening. An analysis of the properties of temperature-dependent materials is employed. The chip separation is achieved by the adaptive remeshing strategy module found in commercial finite element code Marc. In order to increase the computational efficiency and accuracy, we implement a customized subroutine into the Marc code to define local refinement at the tool tip. Measurements are taken of the shape of the chip, the temperature, stress, strain and strain-rate fields. The values of the cutting forces obtained from the simulations agree well with those obtained from the cutting experiments.
文摘The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple scaling-down of it. This down-sizing involves new phenomena in the chip formation, such as the minimum chip thickness below which no chip is formed. This paper presents a review of the current state of the art in this field from an experimental and a numerical point of view. A 2D finite element model is then developed to study the influence of the depth of cut on the chip formation. After the model validation in macro-cutting, it highlights the phenomena reported in literature and allows to perform a minimum chip thickness estimation.
基金Supported by National Natural Science Foundation of China(Grant No.51175131)
文摘There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting.This paper presents a model of large saw-tooth chip through applying finite element simulation method,which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip.In the meantime,a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel2.25Cr-lMo-0.25V.The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters,which can verify the validity of the established model.The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools.In the meanwhile,the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction.This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition,as well as analyzes the production mechanism of the large chip in the macro and micro conditions.Therefore,the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.
基金supported by the National Natural Science Foundation of China(Grant Nos.11132011,11021262 and 11172303)the National Basic Research Program of China("973"Project)(Grant No.2012CB937500)
文摘In this study, molecular dynamics simulations were carried out to study the effect of machining velocities on the mechanism of chip formation in nano-metric copper. A wide range of cutting velocities was performed from 10 to 2000 m/s, and the microstructure's evolution from a crystalline state to an amorphous state was studied. At the low machining velocity, dislocations were generated from the surface in front of the tool, and the immobile dislocation deduced by the cross slip of dislocation was observed. At the high machining velocity, no crystal dislocation nucleated, but instead disorder atoms were found near the tool. Temperature near the tool region increased with the increasing machining velocities, and the temperature had an important effect on the phase transition of the crystal structure.
文摘Abstract Predictive models for machining operations have been significantly improved through numerous methods in recent decades. This study proposed a 3D finite element modeling (3D FEM) approach for the micro end-milling orAl6061-T6. Finite element (FE) simulations were performed under different cutting conditions to obtain realistic numerical predictions of chip flow, burr formation, and cutting forces. FE modeling displayed notable advantages, such as capability to easily handle any type of tool geometry and any side effect on chip formation, including thermal aspect and material property changes. The proposed 3D FE model considers the effects ofmiU helix angle and cutting edge radius on the chip. The prediction capability of the FE model was validated by comparing numerical model and experimental test results. Burr dimension trends were correlated with force profile shapes. However, the FE predictions overestimated the real force magnitude. This overestimation indicates that the model requires further development.
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199 and 42241149)Shenzhen Fundamental Research Program (Grant Nos.JCYJ20200109150425085 and JCYJ20220818102601004)+2 种基金Shenzhen Science and Technology Program (Grant Nos.JSGG20201103100001004 and JSGG20220831105800001)Research Development Program of China (Grant No.2022YFB4602502)Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010203)。
文摘To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.
文摘Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.