In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaot...In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory, and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.展开更多
This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation const...This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation constraint is modeled with the approximated scalar sign function which is a smooth nonlinear function. The resulting nonlinear model is further linearized at any operating point with the optimal linearization technique, and Linear Quadratic Regulator (LQR) is then applied for a state-feedback controller optimal for each operating point. As input saturation is encountered, an iterative procedure is developed to adjust control gains by systematically updating LQR weighting matrices until the inputs lie within the saturation limits. Through global digital redesign, the analog LQR controller is converted to an equivalent digital one for keeping the essential control performance, and moreover, delay compensation is taken into account during digital redesign for compensating the potential time delays in a control loop. The swing-up and stabilization control of single rotary inverted pendulum system is used to illustrate and verify the proposed method.展开更多
In this paper,using scalar feedback controller and stability theory of fractional-order systems,a gener-alized synchronization method for different fractional-order chaotic systems is established.Simulation results sh...In this paper,using scalar feedback controller and stability theory of fractional-order systems,a gener-alized synchronization method for different fractional-order chaotic systems is established.Simulation results show theeffectiveness of the theoretical results.展开更多
文摘In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory, and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.
文摘This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation constraint is modeled with the approximated scalar sign function which is a smooth nonlinear function. The resulting nonlinear model is further linearized at any operating point with the optimal linearization technique, and Linear Quadratic Regulator (LQR) is then applied for a state-feedback controller optimal for each operating point. As input saturation is encountered, an iterative procedure is developed to adjust control gains by systematically updating LQR weighting matrices until the inputs lie within the saturation limits. Through global digital redesign, the analog LQR controller is converted to an equivalent digital one for keeping the essential control performance, and moreover, delay compensation is taken into account during digital redesign for compensating the potential time delays in a control loop. The swing-up and stabilization control of single rotary inverted pendulum system is used to illustrate and verify the proposed method.
基金the Foundation of Chongqing Education Committee under Grant No.J070502
文摘In this paper,using scalar feedback controller and stability theory of fractional-order systems,a gener-alized synchronization method for different fractional-order chaotic systems is established.Simulation results show theeffectiveness of the theoretical results.