P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca...P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.展开更多
The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating...The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the follo...We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.展开更多
We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a...We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of...Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of the normalized response spectra (NRS) of ground motions, respectively. Engineering characteristics of 5% -damped NRS, and the bi-normalized response spectra (BNRS) are investigated accounting for the effects of soil condition and fault distance. Nearly 600 horizontal ground motion components during the Chi-Chi earthquake are included in the analysis. It shows that the NRS strongly depends on soil condition and fault distance. However, soil condition and distance have only a slight influence on two kinds of BNRS. Dispersion analysis indicates that such normalization can reduce scatter in the derivation of response spectral shapes. Finally, a parametric analysis of the scalar periods (Tp, To) is performed and then compared with those of previous studies. These special and particular aspects of earthquake response spectra and scalar periods need to be considered in developing earthquake-resistant design criteria.展开更多
基金supported by the National Key R&D Program of China(No.2018YFA0702505)the project of CNOOC Limited(Grant No.CNOOC-KJ GJHXJSGG YF 2022-01)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting application,2022DQ0604-02)NSFC(Grant Nos.U23B20159,41974142,42074129,12001311)。
文摘P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.
文摘The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.
基金supported by the National Natural Science Foun-dation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102).
文摘We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金China Postdoctoral Science Foundation ( No20060400826)
文摘Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of the normalized response spectra (NRS) of ground motions, respectively. Engineering characteristics of 5% -damped NRS, and the bi-normalized response spectra (BNRS) are investigated accounting for the effects of soil condition and fault distance. Nearly 600 horizontal ground motion components during the Chi-Chi earthquake are included in the analysis. It shows that the NRS strongly depends on soil condition and fault distance. However, soil condition and distance have only a slight influence on two kinds of BNRS. Dispersion analysis indicates that such normalization can reduce scatter in the derivation of response spectral shapes. Finally, a parametric analysis of the scalar periods (Tp, To) is performed and then compared with those of previous studies. These special and particular aspects of earthquake response spectra and scalar periods need to be considered in developing earthquake-resistant design criteria.