In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the ...This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.展开更多
This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation met...This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended.展开更多
Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem d...Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm.展开更多
By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which invo...By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.展开更多
Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-typ...Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.展开更多
In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar-vector-tensor Hulth6n potentials are obtained with any arbitrary spin-orbit coupli...In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar-vector-tensor Hulth6n potentials are obtained with any arbitrary spin-orbit coupling number using the Pekeris approximation. The Hulth6n tensor interaction is studied instead of the commonly used Coulomb or linear terms. The generalized parametric Nikiforov-Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms. It is shown that tensor interaction removes degeneracy between spin and p-spin doublets. Some numerical results are also given.展开更多
基金Financial support from the Aeronautical and Automotive Department of Engineering of Loughborough University in the form of a research studentship for K Wang is gratefully acknowledge&
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10671120)
文摘This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.
文摘This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended.
文摘Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm.
文摘By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.
文摘Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.
文摘In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar-vector-tensor Hulth6n potentials are obtained with any arbitrary spin-orbit coupling number using the Pekeris approximation. The Hulth6n tensor interaction is studied instead of the commonly used Coulomb or linear terms. The generalized parametric Nikiforov-Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms. It is shown that tensor interaction removes degeneracy between spin and p-spin doublets. Some numerical results are also given.