BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which invo...By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.展开更多
This paper considers multi-dimensional Riemann problem in another kind of view. The author gets solution of (1.1)(1.2) in Theorem 3.4 and proves itu uniqueness. A new method of solution constructing is applied, which ...This paper considers multi-dimensional Riemann problem in another kind of view. The author gets solution of (1.1)(1.2) in Theorem 3.4 and proves itu uniqueness. A new method of solution constructing is applied, which is different from the usual self-similar transformation. The author also discusses some generalized concepts in multi-dimensional situation (such as 'convex condition', 'left value' and 'right value', etc). An example is finally given to demonstrate that rarefaction wave solution of (1.1)(1.2) is not self-similar.展开更多
In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four s...In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.展开更多
In this paper, a simplest scalar nonconvex ZND combustion model with viscosity is considered. The existence of the global solution of the Riemann problem for the combustion model is obtained by using the fixed point t...In this paper, a simplest scalar nonconvex ZND combustion model with viscosity is considered. The existence of the global solution of the Riemann problem for the combustion model is obtained by using the fixed point theorem.展开更多
This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the ...This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.展开更多
In this article, we study the generalized Riemann problem for a scalar non- convex Chapman-Jouguet combustion model in a neighborhood of the origin (t 〉 0) on the (x, t) plane. We focus our attention to the pertu...In this article, we study the generalized Riemann problem for a scalar non- convex Chapman-Jouguet combustion model in a neighborhood of the origin (t 〉 0) on the (x, t) plane. We focus our attention to the perturbation on initial binding energy. The solutions are obtained constructively under the entropy conditions. It can be found that the solutions are essentially different from the corresponding Riemann solutions for some cases. Especially, two important phenomena are observed: the transition from detonation to deflagration followed by a shock, which appears in the numerical simulations [7, 27]; the transition from deflagration to detonation (DDT), which is one of the core problems in gas dynamic combustion.展开更多
The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spit...The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spite of methodological progress,the issues of efficiency and ease of implementation of the solution of the associated generalized Riemann problem(GRP)remain the centre of attention in the ADER approach.In the original formulation of ADER schemes,the proposed solution procedure for the GRP was based on(i)Taylor series expansion of the solution in time right at the element interface,(ii)subsequent application of the Cauchy-Kowalewskaya procedure to convert time derivatives to functionals of space derivatives,and(iii)solution of classical Riemann problems for high-order spatial derivatives to complete the Taylor series expansion.For realistic problems the Cauchy-Kowalewskaya procedure requires the use of symbolic manipulators and being rather cumbersome its replacement or simplification is highly desirable.In this paper we propose a new class of solvers for the GRP that avoid the Cauchy-Kowalewskaya procedure and result in simpler ADER schemes.This is achieved by exploiting the history of the numerical solution that makes it possible to devise a time-reconstruction procedure at the element interface.Still relying on a time Taylor series expansion of the solution at the interface,the time derivatives are then easily calculated from the time-reconstruction polynomial.The resulting schemes are called ADER-TR.A thorough study of the linear stability properties of the linear version of the schemes is carried out using the von Neumann method,thus deducing linear stability regions.Also,via careful numerical experiments,we deduce stability regions for the corresponding non-linear schemes.Numerical examples using the present simplified schemes of fifth and seventh order of accuracy in space and time show that these compare favourably with conventional ADER methods.This paper is restricted to the one-dimensional scalar case with source term,but preliminary results for the one-dimensional Euler equations indicate that the time-reconstruction approach offers significant advantages not only in terms of ease of implementation but also in terms of efficiency for the high-order range schemes.展开更多
This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a con...This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.展开更多
BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood....BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the...Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.展开更多
Detecting dark matter remains one of the most challenging problems in modern physics.We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons,as well as the coupling of ultralig...Detecting dark matter remains one of the most challenging problems in modern physics.We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons,as well as the coupling of ultralight axion dark matter to gluons,using long-baseline atom interferometers.Interactions between ultralight scalar and axion dark matter with quarks and gluons can induce oscillations in nuclear charge radii,consequently causing oscillations in atomic transition frequencies.We calculate the differential phase shift produced by these dark matter interactions in long-baseline atom interferometers,presenting constraints on the scalar dark matter coupling parameters dg and d^m,as well as on the axion dark matter coupling parameter 1/fa.Our results are anticipated to improve existing bounds and complement bounds from other experiments.展开更多
In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
In this paper we prove an existence result for the nonlinear elliptic problem:-△u = Ku5,u 〉 0 in Ω,u = 0 on Ω,where Ω is a smooth bounded domain of R3 and K is a positive function in Ω.Our method relies on stud...In this paper we prove an existence result for the nonlinear elliptic problem:-△u = Ku5,u 〉 0 in Ω,u = 0 on Ω,where Ω is a smooth bounded domain of R3 and K is a positive function in Ω.Our method relies on studying its corresponding subcritical approximation problem and then using a topological argument.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving t...The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method.展开更多
The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating...The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.展开更多
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
文摘By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.
基金National Tian-Yuan Mathematics Foundation of China!Grant No: 1937015
文摘This paper considers multi-dimensional Riemann problem in another kind of view. The author gets solution of (1.1)(1.2) in Theorem 3.4 and proves itu uniqueness. A new method of solution constructing is applied, which is different from the usual self-similar transformation. The author also discusses some generalized concepts in multi-dimensional situation (such as 'convex condition', 'left value' and 'right value', etc). An example is finally given to demonstrate that rarefaction wave solution of (1.1)(1.2) is not self-similar.
基金supported by 973 Key program and the Key Program from Beijing Educational Commission with No. KZ200910028002Program for New Century Excellent Talents in University (NCET)+4 种基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR-IHLB)The research of Sheng partially supported by NSFC (10671120)Shanghai Leading Academic Discipline Project: J50101The research of Zhang partially supported by NSFC (10671120)The research of Zheng partially supported by NSF-DMS-0603859
文摘In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
基金Project supported by the National Natural Science Foundation of China (Grant No.10671120)
文摘In this paper, a simplest scalar nonconvex ZND combustion model with viscosity is considered. The existence of the global solution of the Riemann problem for the combustion model is obtained by using the fixed point theorem.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10671120)
文摘This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.
基金Supported by NUAA Research Funding (NS2011001)NUAA’S Scientific Fund forthe Introduction of Qualified Personal,NSFC grant 10971130+1 种基金Shanghai Leading Academic Discipline ProjectJ 50101Shanghai Municipal Education Commission of Scientific Research Innovation Project 112284
文摘In this article, we study the generalized Riemann problem for a scalar non- convex Chapman-Jouguet combustion model in a neighborhood of the origin (t 〉 0) on the (x, t) plane. We focus our attention to the perturbation on initial binding energy. The solutions are obtained constructively under the entropy conditions. It can be found that the solutions are essentially different from the corresponding Riemann solutions for some cases. Especially, two important phenomena are observed: the transition from detonation to deflagration followed by a shock, which appears in the numerical simulations [7, 27]; the transition from deflagration to detonation (DDT), which is one of the core problems in gas dynamic combustion.
基金G.I.Montecinos thanks the National Chilean Fund for Scientific and Technological Development,FONDECYT(Fondo Nacional de Desarrollo Científico y Tecnológico),in the frame of the project for Initiation in Research 11180926
文摘The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spite of methodological progress,the issues of efficiency and ease of implementation of the solution of the associated generalized Riemann problem(GRP)remain the centre of attention in the ADER approach.In the original formulation of ADER schemes,the proposed solution procedure for the GRP was based on(i)Taylor series expansion of the solution in time right at the element interface,(ii)subsequent application of the Cauchy-Kowalewskaya procedure to convert time derivatives to functionals of space derivatives,and(iii)solution of classical Riemann problems for high-order spatial derivatives to complete the Taylor series expansion.For realistic problems the Cauchy-Kowalewskaya procedure requires the use of symbolic manipulators and being rather cumbersome its replacement or simplification is highly desirable.In this paper we propose a new class of solvers for the GRP that avoid the Cauchy-Kowalewskaya procedure and result in simpler ADER schemes.This is achieved by exploiting the history of the numerical solution that makes it possible to devise a time-reconstruction procedure at the element interface.Still relying on a time Taylor series expansion of the solution at the interface,the time derivatives are then easily calculated from the time-reconstruction polynomial.The resulting schemes are called ADER-TR.A thorough study of the linear stability properties of the linear version of the schemes is carried out using the von Neumann method,thus deducing linear stability regions.Also,via careful numerical experiments,we deduce stability regions for the corresponding non-linear schemes.Numerical examples using the present simplified schemes of fifth and seventh order of accuracy in space and time show that these compare favourably with conventional ADER methods.This paper is restricted to the one-dimensional scalar case with source term,but preliminary results for the one-dimensional Euler equations indicate that the time-reconstruction approach offers significant advantages not only in terms of ease of implementation but also in terms of efficiency for the high-order range schemes.
文摘This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.
基金Supported by the National Natural Science Foundation of China,No.81330068.
文摘BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金the financial support from the National Natural Science Foundation of China(12171405 and 11661074)the Program for New Century Excellent Talents in Fujian Province University+2 种基金the financial support from the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)Collaborative Innovation Center of Statistical Data Engineering Technology&ApplicationDigital+Discipline Construction Project(SZJ2022B004)。
文摘Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.
基金Shandong Provincial Natural Science Foundation(Grant No.ZR2023QA143)Startup Foundation for Doctors of Shandong University of Aeronautics(Grant No.2022Y18).
文摘Detecting dark matter remains one of the most challenging problems in modern physics.We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons,as well as the coupling of ultralight axion dark matter to gluons,using long-baseline atom interferometers.Interactions between ultralight scalar and axion dark matter with quarks and gluons can induce oscillations in nuclear charge radii,consequently causing oscillations in atomic transition frequencies.We calculate the differential phase shift produced by these dark matter interactions in long-baseline atom interferometers,presenting constraints on the scalar dark matter coupling parameters dg and d^m,as well as on the axion dark matter coupling parameter 1/fa.Our results are anticipated to improve existing bounds and complement bounds from other experiments.
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
文摘In this paper we prove an existence result for the nonlinear elliptic problem:-△u = Ku5,u 〉 0 in Ω,u = 0 on Ω,where Ω is a smooth bounded domain of R3 and K is a positive function in Ω.Our method relies on studying its corresponding subcritical approximation problem and then using a topological argument.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
基金supported by the Na⁃tional Natural Science Foundation of China(No.12172078)the Fundamental Research Funds for the Central Univer⁃sities(No.DUT24MS007).
文摘The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method.
文摘The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.