In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca...P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.展开更多
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating...The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.展开更多
The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field th...The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.展开更多
In this article dedicated to the modeling of vertical mass transfers between the biofilm and the bulk flow, we have, in the first instance, presented the methodology used, followed by the presentation of various resul...In this article dedicated to the modeling of vertical mass transfers between the biofilm and the bulk flow, we have, in the first instance, presented the methodology used, followed by the presentation of various results obtained through analyses conducted on velocity fields, different fluxes, and overall transfer coefficients. Due to numerical constraints (resolution of relevant spatial scales), we have restricted the analysis to low Schmidt numbers (S<sub>c</sub><sub></sub>=0.1, S<sub>c</sub></sub>=1, and S<sub>c</sub></sub>=10) and a single roughness Reynolds number (Re<sub>*</sub>=150). The analysis of instantaneous concentration fields from various simulations revealed logarithmic concentration profiles above the canopy. In this zone, the concentration is relatively homogeneous for longer times. The analysis of results also showed that the contribution of molecular diffusion to the total flux depends on the Schmidt number. This contribution is negligible for Schmidt numbers S<sub>c</sub></sub>≥0.1, but nearly balances the turbulent flux for S<sub>c</sub></sub>=0.1. In the canopy, the local Sherwood number, given by the ratio of the total flux (within or above the canopy) to the molecular diffusion flux at the wall, also depends on the Schmidt number and varies significantly between the canopy and the region above. The exchange velocity, a purely hydrodynamic parameter, is independent of the Schmidt number and is on the order of 10% of in the present case. This study also reveals that nutrient absorption by organisms near the wall depends on the Schmidt number. Such absorption is facilitated by lower Schmidt numbers.展开更多
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the follo...We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.展开更多
In this paper,we prove that for some completions of certain fiber bundles there is a Maxwell-Einstein metric conformally related to any given Kahler class.
A simple extension of the standard model(SM) with a μ-flavored vector-like lepton(VLL) doublet and a real singlet scalar can have an interesting implication to the h→μ^(+)μ^(-)decay while offering the simplest pos...A simple extension of the standard model(SM) with a μ-flavored vector-like lepton(VLL) doublet and a real singlet scalar can have an interesting implication to the h→μ^(+)μ^(-)decay while offering the simplest possible explanation for the dark matter(DM) phenomenology.Assuming the real singlet scalar to be a viable DM candidate,it has been shown that the muon Yukawa coupling can have a negative contribution at the oneloop order if the 2^(nd) generation SM leptons are allowed to couple with the VLL doublet.The stringent direct detection bounds corresponding to a real singlet scalar DM can easily be relaxed if the SM quark sector was augmented with a dimension-6 operator at some new physics(NP) scale Λ_(NP).Thus,this model presents a significant phenomenological study where the muon Yukawa coupling can be corrected within a real singlet scalar DM framework.The considered parameter space can be tested/constrained through the high luminosity run of the LHC(HL-LHC) and future direct detection experiments.展开更多
We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a...We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.展开更多
We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate t...We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.展开更多
This article originates from the observation that field lines are drawn using distinctive rules in magnetic field and electrostatic fields. It aims at reconciliating the definitions of these fields and thus reaching a...This article originates from the observation that field lines are drawn using distinctive rules in magnetic field and electrostatic fields. It aims at reconciliating the definitions of these fields and thus reaching a consensus on the interpretation of field lines. Our unified field definition combines three orthogonal vectors and a unique scalar value. Field lines are then defined as isovalue lines of the scalar value, rendering it simpler to interpret in both field types. Specific to our field definition is the use of square root of vector’s cross product so that all vectors have the same physical unit. This enhanced field definition also enables a more efficient calculation of Biot-Savart law. This article is the first of a series allowing the drawing of isovalue contour lines.展开更多
Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior chara...Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion detection.The challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,etc.lead to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection technique.The data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as selection.Initially,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack classes.Based on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the types.Thereafter,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced dataset.The selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter method.Finally,the selected features are trained and tested for detecting attacks using BNM-tGAN.The Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the attack with low computation time.The work avoids false alarm rate of attacks and remains to be relatively robust against malicious attacks as compared to existing methods.展开更多
Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’...Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function.展开更多
Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of...Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of the normalized response spectra (NRS) of ground motions, respectively. Engineering characteristics of 5% -damped NRS, and the bi-normalized response spectra (BNRS) are investigated accounting for the effects of soil condition and fault distance. Nearly 600 horizontal ground motion components during the Chi-Chi earthquake are included in the analysis. It shows that the NRS strongly depends on soil condition and fault distance. However, soil condition and distance have only a slight influence on two kinds of BNRS. Dispersion analysis indicates that such normalization can reduce scatter in the derivation of response spectral shapes. Finally, a parametric analysis of the scalar periods (Tp, To) is performed and then compared with those of previous studies. These special and particular aspects of earthquake response spectra and scalar periods need to be considered in developing earthquake-resistant design criteria.展开更多
To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additi...To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.展开更多
Some properties for convex cones are discussed, which are used to obtain an equivalent condition and another important property for nearly cone-subconvexlike set-valued functions. Under the nearly cone-subconvexlikene...Some properties for convex cones are discussed, which are used to obtain an equivalent condition and another important property for nearly cone-subconvexlike set-valued functions. Under the nearly cone-subconvexlikeness, some characterizations of the super efficiency are given in terms of scalarization and Lagrangian multipliers. Related results are generalized.展开更多
The parameterization of surface turbulent fluxes over the Gobi Desert in arid regions is studied by using rationally screened observational data. First, the characteristics of Monin-Obukhov similarity functions are an...The parameterization of surface turbulent fluxes over the Gobi Desert in arid regions is studied by using rationally screened observational data. First, the characteristics of Monin-Obukhov similarity functions are analyzed and their empirical formulae are fitted. The results show that fitted curves of changes of similarity functions of wind speed and temperature with stability parameter differ little from the typical empirical curves and are within the ranges of scatter of the empirical curves, but their values in the neutral condition arc different from the typical values to some extent. Furthermore, average values of momentum and scalar (sensible heat) roughness lengths as well as changes of scalar roughness length with friction velocity are determined by utilizing the data. It is found that the average values of scalar roughness length are about one order smaller than that of the momentum roughness length and decrease with increasing friction velocity, but they are evidently larger than their theoretically forecasted values.展开更多
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金supported by the National Key R&D Program of China(No.2018YFA0702505)the project of CNOOC Limited(Grant No.CNOOC-KJ GJHXJSGG YF 2022-01)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting application,2022DQ0604-02)NSFC(Grant Nos.U23B20159,41974142,42074129,12001311)。
文摘P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
文摘The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.
文摘The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.
文摘In this article dedicated to the modeling of vertical mass transfers between the biofilm and the bulk flow, we have, in the first instance, presented the methodology used, followed by the presentation of various results obtained through analyses conducted on velocity fields, different fluxes, and overall transfer coefficients. Due to numerical constraints (resolution of relevant spatial scales), we have restricted the analysis to low Schmidt numbers (S<sub>c</sub><sub></sub>=0.1, S<sub>c</sub></sub>=1, and S<sub>c</sub></sub>=10) and a single roughness Reynolds number (Re<sub>*</sub>=150). The analysis of instantaneous concentration fields from various simulations revealed logarithmic concentration profiles above the canopy. In this zone, the concentration is relatively homogeneous for longer times. The analysis of results also showed that the contribution of molecular diffusion to the total flux depends on the Schmidt number. This contribution is negligible for Schmidt numbers S<sub>c</sub></sub>≥0.1, but nearly balances the turbulent flux for S<sub>c</sub></sub>=0.1. In the canopy, the local Sherwood number, given by the ratio of the total flux (within or above the canopy) to the molecular diffusion flux at the wall, also depends on the Schmidt number and varies significantly between the canopy and the region above. The exchange velocity, a purely hydrodynamic parameter, is independent of the Schmidt number and is on the order of 10% of in the present case. This study also reveals that nutrient absorption by organisms near the wall depends on the Schmidt number. Such absorption is facilitated by lower Schmidt numbers.
文摘We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.
文摘In this paper,we prove that for some completions of certain fiber bundles there is a Maxwell-Einstein metric conformally related to any given Kahler class.
文摘A simple extension of the standard model(SM) with a μ-flavored vector-like lepton(VLL) doublet and a real singlet scalar can have an interesting implication to the h→μ^(+)μ^(-)decay while offering the simplest possible explanation for the dark matter(DM) phenomenology.Assuming the real singlet scalar to be a viable DM candidate,it has been shown that the muon Yukawa coupling can have a negative contribution at the oneloop order if the 2^(nd) generation SM leptons are allowed to couple with the VLL doublet.The stringent direct detection bounds corresponding to a real singlet scalar DM can easily be relaxed if the SM quark sector was augmented with a dimension-6 operator at some new physics(NP) scale Λ_(NP).Thus,this model presents a significant phenomenological study where the muon Yukawa coupling can be corrected within a real singlet scalar DM framework.The considered parameter space can be tested/constrained through the high luminosity run of the LHC(HL-LHC) and future direct detection experiments.
基金supported by the National Natural Science Foun-dation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102).
文摘We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.
文摘We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.
文摘This article originates from the observation that field lines are drawn using distinctive rules in magnetic field and electrostatic fields. It aims at reconciliating the definitions of these fields and thus reaching a consensus on the interpretation of field lines. Our unified field definition combines three orthogonal vectors and a unique scalar value. Field lines are then defined as isovalue lines of the scalar value, rendering it simpler to interpret in both field types. Specific to our field definition is the use of square root of vector’s cross product so that all vectors have the same physical unit. This enhanced field definition also enables a more efficient calculation of Biot-Savart law. This article is the first of a series allowing the drawing of isovalue contour lines.
文摘Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion detection.The challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,etc.lead to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection technique.The data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as selection.Initially,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack classes.Based on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the types.Thereafter,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced dataset.The selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter method.Finally,the selected features are trained and tested for detecting attacks using BNM-tGAN.The Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the attack with low computation time.The work avoids false alarm rate of attacks and remains to be relatively robust against malicious attacks as compared to existing methods.
文摘Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function.
基金China Postdoctoral Science Foundation ( No20060400826)
文摘Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of the normalized response spectra (NRS) of ground motions, respectively. Engineering characteristics of 5% -damped NRS, and the bi-normalized response spectra (BNRS) are investigated accounting for the effects of soil condition and fault distance. Nearly 600 horizontal ground motion components during the Chi-Chi earthquake are included in the analysis. It shows that the NRS strongly depends on soil condition and fault distance. However, soil condition and distance have only a slight influence on two kinds of BNRS. Dispersion analysis indicates that such normalization can reduce scatter in the derivation of response spectral shapes. Finally, a parametric analysis of the scalar periods (Tp, To) is performed and then compared with those of previous studies. These special and particular aspects of earthquake response spectra and scalar periods need to be considered in developing earthquake-resistant design criteria.
基金The National Natural Science Foundation of China (No.60473029,60673072).
文摘To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.
文摘Some properties for convex cones are discussed, which are used to obtain an equivalent condition and another important property for nearly cone-subconvexlike set-valued functions. Under the nearly cone-subconvexlikeness, some characterizations of the super efficiency are given in terms of scalarization and Lagrangian multipliers. Related results are generalized.
基金This work was supported by the National Natu-ral Science Foundation of China under Grant No.40175004 and the National Key Program for Developing Basic Sci-ences of China under Grant No.G1998040904-2.
文摘The parameterization of surface turbulent fluxes over the Gobi Desert in arid regions is studied by using rationally screened observational data. First, the characteristics of Monin-Obukhov similarity functions are analyzed and their empirical formulae are fitted. The results show that fitted curves of changes of similarity functions of wind speed and temperature with stability parameter differ little from the typical empirical curves and are within the ranges of scatter of the empirical curves, but their values in the neutral condition arc different from the typical values to some extent. Furthermore, average values of momentum and scalar (sensible heat) roughness lengths as well as changes of scalar roughness length with friction velocity are determined by utilizing the data. It is found that the average values of scalar roughness length are about one order smaller than that of the momentum roughness length and decrease with increasing friction velocity, but they are evidently larger than their theoretically forecasted values.