The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties....The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre...The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.展开更多
The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction betwe...The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the largest stress is distributed at the region which directly contacted with the cutters. The proposed research can provide good solutions for correct design and installation of cutters, and it is necessary to design mounting bracket to fix cutters on cutter head.展开更多
An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness...An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.展开更多
The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-sc...The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale met...A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.展开更多
With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. An important topic in color image processing is the development of efficient tools capable of fil...With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. An important topic in color image processing is the development of efficient tools capable of filtering images without blurring them and without changing their original chromatic contents. In this paper, a new technique reducing noise of color image is developed. A class of color-scale morphological operations is introduced, which extend mathematical morphology to color image processing, representing a color image as a vector function. The correlation between color components is utilized to perform noise removal. Color-scale morphological niters with multiple structuring elements (CSMF-MSEs) are proposed. Their properties are discussed and proved. Experimental results show that CSMF-MSEs are suitable and powerful to eliminate noise and preserve edges in color image because of efficient utilization of inherent correlation between color components, and they perform better than vector展开更多
剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部...剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.展开更多
基金This research wasfinanciallysupported bythe National Natural Science Foundation of China(Grant No.50639030)a Programfor Changjiang ScholarsInnovative Research Teamin Dalian University of Technology(Grant No.IRTO420)
文摘The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
基金Supported by the Key Program of National Natural Science Foundation of China(No.51138001)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51121005)+2 种基金the Fundamental Research Funds for the Central Universities(DUT13LK16)the Young Scientists Fund of National Natural Science Foundation of China(No.51109134)China Postdoctoral Science Foundation(No.2011M500814)
文摘The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2013CB035400)Science Fund for Creative Research Groups of NSFC of China (Grant No. 51221004)National Natural Science Foundation of China (Grant No. 51075357)
文摘The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the largest stress is distributed at the region which directly contacted with the cutters. The proposed research can provide good solutions for correct design and installation of cutters, and it is necessary to design mounting bracket to fix cutters on cutter head.
基金supported by the Innovation Training Project for Students in NUAA(No.2016C-X0010-129)the Key Laboratory of Aircraft Environment Control and Life Support(NUAA),Ministry of Industry and Information Technology
文摘An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.10801042 and 11171257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20104410120001)
文摘The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
基金Supported by the National Natural Science Foundation of China(51105195,51075204)the Aeronautical Science Foundation of China(2011ZB52024)
文摘A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.
基金Supported by the Natural Science Foundation of China,No.69775004
文摘With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. An important topic in color image processing is the development of efficient tools capable of filtering images without blurring them and without changing their original chromatic contents. In this paper, a new technique reducing noise of color image is developed. A class of color-scale morphological operations is introduced, which extend mathematical morphology to color image processing, representing a color image as a vector function. The correlation between color components is utilized to perform noise removal. Color-scale morphological niters with multiple structuring elements (CSMF-MSEs) are proposed. Their properties are discussed and proved. Experimental results show that CSMF-MSEs are suitable and powerful to eliminate noise and preserve edges in color image because of efficient utilization of inherent correlation between color components, and they perform better than vector
文摘剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.