期刊文献+
共找到1,359篇文章
< 1 2 68 >
每页显示 20 50 100
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
1
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
下载PDF
Active Shape Models Using Scale Invariant Feature Transform
2
作者 史勇红 戚飞虎 +1 位作者 栾红霞 吴国荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期713-718,共6页
A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segme... A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database. 展开更多
关键词 active shape model (ASM) deformable segmentation CHEST RADIOGRAPH scale invariant feature transform (sift) local DESCRIPTOR
下载PDF
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis
3
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 Relative Radiometric Normalization scale invariant feature transform Automatically Extraction Control Points Sum of Absolute Difference
下载PDF
Face recognition using SIFT features under 3D meshes 被引量:1
4
作者 张诚 谷宇章 +1 位作者 胡珂立 王营冠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1817-1825,共9页
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes... Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes. 展开更多
关键词 3D face recognition seale-invariant feature transform (sift expression OCCLUSION large pose changes 3D meshes
下载PDF
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
5
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 MULTI-scale Principal Component Analysis Discrete WAVELET transform feature Extraction Signal CLASSIFICATION Empirical CLASSIFICATION
下载PDF
Target classification using SIFT sequence scale invariants 被引量:5
6
作者 Xufeng Zhu Caiwen Ma +1 位作者 Bo Liu Xiaoqian Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期633-639,共7页
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o... On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI. 展开更多
关键词 target classification scale invariant feature transform descriptors sequence scale support vector machine
下载PDF
基于Bag of Features模型的害虫图像分类技术研究 被引量:1
7
作者 姜祖新 赵小军 +3 位作者 王复元 盛强 谢鹏 徐擎宇 《粮食储藏》 2015年第4期28-32,共5页
将Bag of Features模型结合OpenCV开源图像库提取害虫图像的特征,然后用Kmedoids算法对其进行聚类,生成关键字,最后用AdaBoosting算法构建分类器,实验采用Pascal Voc图像库中的数据进行训练和测试,实验表明,该算法分类精度高、特征提取... 将Bag of Features模型结合OpenCV开源图像库提取害虫图像的特征,然后用Kmedoids算法对其进行聚类,生成关键字,最后用AdaBoosting算法构建分类器,实验采用Pascal Voc图像库中的数据进行训练和测试,实验表明,该算法分类精度高、特征提取速度和分类速度也比较快。 展开更多
关键词 sift特征 聚类算法 图像分类性能
下载PDF
基于SIFT特征点提取的ICP配准算法 被引量:1
8
作者 钱博 宋玺钰 《沈阳理工大学学报》 CAS 2024年第3期48-54,共7页
为解决传统迭代最近点(ICP)算法对点云配准的起始点对选择不佳而导致配准时间长、效率低的问题,提出一种基于尺度不变特征变换(SIFT)特征点提取的ICP点云配准算法(ST-ICP)。首先使用SIFT算法进行原始点云与目标点云的SIFT特征点提取,根... 为解决传统迭代最近点(ICP)算法对点云配准的起始点对选择不佳而导致配准时间长、效率低的问题,提出一种基于尺度不变特征变换(SIFT)特征点提取的ICP点云配准算法(ST-ICP)。首先使用SIFT算法进行原始点云与目标点云的SIFT特征点提取,根据提取特征点完成快速点特征直方图(FPFH)特征运算,通过采样一致性初始配准算法(SAC-IA)搜索对应点对、求解变换矩阵,再进一步运用ICP算法进行点云精细配准。实验结果表明:与ICP算法相比较,ST-ICP算法的配准误差在迭代次数为5次时减小了1.019 cm,迭代次数为10次时减小了0.443 cm;在配准误差达到10^(-2) cm级别时,ST-ICP算法所用时间比传统ICP算法减少了12.829 s。ST-ICP算法优化了对应点对的选择,提升了配准精度和配准效率。 展开更多
关键词 点云配准 迭代最近点算法 尺度不变特征变换 特征点 快速点特征直方图
下载PDF
基于边缘辅助和多尺度Transformer的无参考屏幕内容图像质量评估
9
作者 陈羽中 陈友昆 +1 位作者 林闽沪 牛玉贞 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2242-2256,共15页
与从现实场景中拍摄的自然图像不同,屏幕内容图像是一种合成图像,通常由计算机生成的文本、图形和动画等各种多媒体形式组合而成.现有评估方法通常未能充分考虑图像边缘结构信息和全局上下文信息对屏幕内容图像质量感知的影响.为解决上... 与从现实场景中拍摄的自然图像不同,屏幕内容图像是一种合成图像,通常由计算机生成的文本、图形和动画等各种多媒体形式组合而成.现有评估方法通常未能充分考虑图像边缘结构信息和全局上下文信息对屏幕内容图像质量感知的影响.为解决上述问题,本文提出一种基于边缘辅助和多尺度Transformer的无参考屏幕内容图像质量评估模型.首先,使用高斯拉普拉斯算子构造由失真屏幕内容图像高频信息组成的边缘结构图,然后通过卷积神经网络(Convolutional Neural Network,CNN)对输入的失真屏幕内容图像和相应的边缘结构图进行多尺度的特征提取与融合,以图像的边缘结构信息为模型训练提供额外的信息增益.此外,本文进一步构建了基于Transformer的多尺度特征编码模块,从而在CNN获得的局部特征基础上更好地建模不同尺度图像和边缘特征的全局上下文信息.实验结果表明,本文提出的方法在指标上优于其他现有的无参考和全参考屏幕内容图像质量评估方法,能够取得更高的主客观视觉感知一致性. 展开更多
关键词 无参考屏幕内容图像质量评估 高斯拉普拉斯算子 卷积神经网络 transformER 多尺度特征
下载PDF
多尺度局部特征和Transformer全局学习融合的发动机剩余寿命预测
10
作者 陈俊英 席月芸 李朝阳 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1818-1830,共13页
飞机发动机剩余寿命(Remaining useful life,RUL)的准确预测对确保其安全性和可靠性至关重要.在基于多传感器检测数据预测时,需解决局部特征提取问题以全面捕捉设备在不同时间尺度下的退化趋势,并需解决时间序列中各元素之间长期依赖性... 飞机发动机剩余寿命(Remaining useful life,RUL)的准确预测对确保其安全性和可靠性至关重要.在基于多传感器检测数据预测时,需解决局部特征提取问题以全面捕捉设备在不同时间尺度下的退化趋势,并需解决时间序列中各元素之间长期依赖性的全局学习问题.因此,提出了结合多尺度局部特征增强单元(Multi-sacle local feature enhancement unit,MSLFU_BLOCK)和Transformer编码器的预测模型,称之为MS_Transformer.MSLFU_BLOCK利用堆叠的因果卷积逐层从时间序列数据中提取多尺度局部信息,同时避免了传统卷积计算中固有的未来数据泄漏问题.随后,Transformer编码器通过其自注意机制进一步捕获时间序列数据中的短期和长期依赖关系.通过将多尺度局部特征增强单元与Transformer编码器相结合,提出的MS_Transformer全面捕捉了时间序列数据中的局部和全局模式.在广泛使用的CMAPSS基准数据集上进行的消融和预测实验验证了模型的合理性和有效性.与13个先进预测模型的比较分析表明,MS_Transformer模型在操作条件更复杂的FD002和FD004数据集上的RMSE和Score指标优于其他模型,同时在四个数据集上的平均性能最优.该研究为发动机剩余寿命预测提供了更为可靠的解决方案. 展开更多
关键词 剩余寿命预测 航空发动机 transformER 多尺度特征 局部特征
下载PDF
基于多层次特征融合的Transformer人脸识别方法
11
作者 夏桂书 朱姿翰 +2 位作者 魏永超 朱泓超 徐未其 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期61-68,共8页
卷积神经网络中的卷积操作只能捕获局部信息,而Transformer能保留更多的空间信息且能建立图像的长距离连接.在视觉领域的应用中,Transformer缺乏灵活的图像尺寸及特征尺度适应能力,通过利用层级式网络增强不同尺度建模的灵活性,且引入... 卷积神经网络中的卷积操作只能捕获局部信息,而Transformer能保留更多的空间信息且能建立图像的长距离连接.在视觉领域的应用中,Transformer缺乏灵活的图像尺寸及特征尺度适应能力,通过利用层级式网络增强不同尺度建模的灵活性,且引入多尺度特征融合模块丰富特征信息.本文提出了一种基于改进的Swin Transformer人脸模型——Swin Face模型.Swin Face以Swin Transformer为骨干网络,引入多层次特征融合模块,增强了模型对人脸的特征表达能力,并使用联合损失函数优化策略设计人脸识别分类器,实现人脸识别.实验结果表明,与多种人脸识别方法相比,Swin Face模型通过使用分级特征融合网络,在LFW、CALFW、AgeDB-30、CFP数据集上均取得最优的效果,验证了此模型具有良好的泛化性和鲁棒性. 展开更多
关键词 人脸识别 transformER 多尺度特征 特征融合
下载PDF
结合沙漏注意力与渐进式混合Transformer的图像分类方法
12
作者 彭晏飞 崔芸 +1 位作者 陈坤 李泳欣 《液晶与显示》 CAS CSCD 北大核心 2024年第9期1223-1232,共10页
Transformer在图像分类任务中具有广泛应用,但在小数据集分类任务中,Transformer受到数据量较少、模型参数量过大等因素的影响,导致分类精度低、收敛速度缓慢。本文提出了一种融合沙漏注意力的渐进式混合Transformer模型。首先,通过下-... Transformer在图像分类任务中具有广泛应用,但在小数据集分类任务中,Transformer受到数据量较少、模型参数量过大等因素的影响,导致分类精度低、收敛速度缓慢。本文提出了一种融合沙漏注意力的渐进式混合Transformer模型。首先,通过下-上采样的沙漏自注意力建模全局特征关系,利用上采样补充下采样操作丢失的信息,同时采用可学习温度参数和负对角掩码锐化注意力的分数分布,避免因层数过多产生过度平滑的现象;其次,设计渐进式下采样模块获得细粒度多尺度特征图,有效捕获低维特征信息;最后,使用混合架构,在顶层阶段使用设计的沙漏注意力,底层阶段使用池化层替代注意力模块,并引入带有深度卷积的层归一化,增加网络局部性。所提方法在T-ImageNet、CIFAR10、CIFAR100、SVHN数据集上进行实验,分类精度可以达到97.42%,计算量和参数量分别为3.41G和25M。实验结果表明,与对比算法相比,该方法的分类精度有明显提升,计算量和参数量有明显降低,提高了Transformer模型在小数据集上的性能表现。 展开更多
关键词 小数据集图像分类 transformER 沙漏注意力 多尺度特征 混合架构
下载PDF
混合U型网络与Transformer的图像去模糊
13
作者 陈清江 邵菲 王炫钧 《计算机工程与科学》 CSCD 北大核心 2024年第10期1843-1851,共9页
针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法。首先,使用一个多尺度特征提取模块提取图像的浅层特征信息。然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留... 针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法。首先,使用一个多尺度特征提取模块提取图像的浅层特征信息。然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留图像细节信息的同时获取图像深层特征信息。再次,构建了一个局部-全局残差细化模块,通过卷积神经网络和SwinTransformer之间的信息交互充分提取全局和局部信息,并实现特征信息的进一步细化。最后,使用一个1×1卷积层进行特征重建。所提方法在GoPro数据集上的实验结果显示,图像的峰值信噪比和结构相似度均值分别为32.92和0.964,均优于其他对比方法。实验结果表明,所提方法可以有效地去除模糊,重建出具有丰富细节的潜在清晰图像。 展开更多
关键词 图像去模糊 细节信息 层级嵌套U型子网络 transformER 多尺度特征
下载PDF
基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割算法 被引量:1
14
作者 姚宗亮 黄荣 +2 位作者 董爱华 韩芳 王青云 《宁夏大学学报(自然科学版)》 CAS 2024年第1期16-24,共9页
脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性... 脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性和差异性,并且模型中的Transformer在捕获远程依赖性的同时,忽略了其较大的计算复杂性、冗余依赖性等问题.针对此问题,提出一种基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割方法(MF-MAPT Swin UNETR),其中多模态融合模块可以充分学习性质相近的模态间信息和不同模态不同尺度的特征变化,为后续分割提供了充分的准备;基于多模态的自适应剪枝Transformer可以降低计算复杂度,对提升性能有一定的帮助,将MF-MAPT Swin UNETR模型在两个公共数据集上进行了实验验证,结果表明,该模型较最先进的方法整体具有突出的分割性能. 展开更多
关键词 脑肿瘤分割 transformER 模态交叉连接 多尺度特征融合 token融合 自适应剪枝
下载PDF
卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法 被引量:1
15
作者 赵凤 耿苗苗 +2 位作者 刘汉强 张俊杰 於俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2237-2248,共12页
高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复... 高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复杂多样的结构,且不同地物之间存在尺度差异。现有的二者结合的方法通常对多尺度地物目标的纹理和结构信息的提取能力有限。为了克服上述局限性,该文提出CNN与视觉Transformer联合驱动的跨层多尺度融合网络HSI分类方法。首先,从结合CNN与视觉Transformer的角度出发,设计了跨层多尺度局部-全局特征提取模块分支,其主要由卷积嵌入的视觉Transformer和跨层特征融合模块构成。具体来说,卷积嵌入的视觉Transformer通过深度融合多尺度CNN与视觉Transformer实现了多尺度局部-全局特征信息的有效提取,从而增强网络对不同尺度地物的关注。进一步地,跨层特征融合模块深度聚合了不同层次的多尺度局部-全局特征信息,以综合考虑地物的浅层纹理信息和深层结构信息。其次,构建了分组多尺度卷积模块分支来挖掘HSI中密集光谱波段潜在的多尺度特征。最后,为了增强网络对HSI中局部波段细节和整体光谱信息的挖掘,设计了残差分组卷积模块对局部-全局光谱特征进行提取。Indian Pines, Houston 2013和Salinas Valley 3个HSI数据集上的实验结果证实了所提方法的有效性。 展开更多
关键词 高光谱图像分类 卷积神经网络 视觉transformer 多尺度特征 融合网络
下载PDF
基于感知增强Swin Transformer的遥感图像检测 被引量:2
16
作者 祝冰艳 陈志华 盛斌 《计算机工程》 CSCD 北大核心 2024年第1期216-223,共8页
随着遥感技术的快速发展,遥感图像检测被广泛应用于农业、军事、国防安全等众多领域。遥感图像相较于传统图像检测存在诸多难点,如何实现高效精准的遥感图像检测成为该领域的研究热点。针对遥感图像检测中存在的计算复杂度高、正负样本... 随着遥感技术的快速发展,遥感图像检测被广泛应用于农业、军事、国防安全等众多领域。遥感图像相较于传统图像检测存在诸多难点,如何实现高效精准的遥感图像检测成为该领域的研究热点。针对遥感图像检测中存在的计算复杂度高、正负样本不平衡、目标尺度小等问题,提出一种基于感知增强Swin Transformer的遥感图像检测网络,以提升遥感图像检测性能。在主干网络设计过程中,利用Swin Transformer分层设计和移动窗口的优点有效减小计算复杂度,同时插入空间局部感知块,加强网络对局部相关性和结构信息的提取能力。设计区域分布回归损失为小目标分配更大的权重,解决了正负样本不平衡的问题,同时结合改进的IoU-aware分类损失消除不同分支之间的差距,降低分类和回归损失。在公共遥感数据集DOTA上的多组实验结果表明,该网络获得了78.47%的平均精度均值和10.8帧/s的检测速度,检测性能优于经典的目标检测网络Faster R-CNN、Mask R-CNN以及现有优秀的遥感图像检测网络,并且在各类不同尺度的目标上均具有较好的性能表现。 展开更多
关键词 遥感图像 目标检测 Swin transformer 多尺度特征 深度学习
下载PDF
Robust Wide Baseline Point Matching Based on Scale Invariant Feature Descriptor 被引量:6
17
作者 岳思聪 王庆 赵荣椿 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期70-74,共5页
In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant featur... In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant feature transform (SIFT). First,the distance between SIFT features is included in the equations of the proximity matrix to measure the similarity between two feature points; then the normalized cross correlation (NCC) used in Scott s method,which has been modified with adaptive scale and orientation,... 展开更多
关键词 computer vision image analysis image match scale invariant feature descriptor
原文传递
基于FPDE-SIFT的声呐干涉图像配准方法
18
作者 刘伟陆 周天 +1 位作者 闫振宇 杜伟东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期101-108,共8页
图像配准是声呐进行高精度干涉测量的保障,该文针对水下目标的声呐图像配准,提出了一种基于4阶偏微分方程尺度不变特征变换的声呐干涉图像配准方法。该方法聚焦声呐图像配准的难点,首先基于4阶偏微分方程构建尺度空间,在保持图像细节的... 图像配准是声呐进行高精度干涉测量的保障,该文针对水下目标的声呐图像配准,提出了一种基于4阶偏微分方程尺度不变特征变换的声呐干涉图像配准方法。该方法聚焦声呐图像配准的难点,首先基于4阶偏微分方程构建尺度空间,在保持图像细节的前提下滤除噪声,提高特征提取的准确度;对于残余噪声造成的特征点误检,借助特征点的相位一致性信息加以筛选,精简特征点样本集;最后对特征点匹配策略进行优化,提出改进的快速样本一致性匹配策略剔除特征点的误匹配。算法增加了匹配点对的数量,提高了匹配点对的准确度,实现了声呐干涉图像的精确配准。水池实验和外场试验表明,该文所提出的算法相较现有算法对声呐图像有着更好的适用性,配准后的均方根误差与留一法均方根均小于1像素,达到了亚像素配准精度。 展开更多
关键词 声呐图像配准 尺度不变特征变换 偏微分方程 相位一致性 快速样本一致性
下载PDF
基于改进SIFT算法的城市航拍图像快速拼接方法
19
作者 姬文芳 朱子文 +1 位作者 邓德志 罗江煜 《测试技术学报》 2024年第5期500-505,共6页
城市航拍图像在城市规划、土地管理、环境监测和基础设施建设等领域具有广泛应用。针对无人机航拍高度越高,图像捕获成本越高,图像质量或能见度越低的问题,使用低空无人机来大量捕获图像;针对经典的尺度不变特征转换(SIFT)图像拼接算法... 城市航拍图像在城市规划、土地管理、环境监测和基础设施建设等领域具有广泛应用。针对无人机航拍高度越高,图像捕获成本越高,图像质量或能见度越低的问题,使用低空无人机来大量捕获图像;针对经典的尺度不变特征转换(SIFT)图像拼接算法存在匹配稳定性差、拼接质量差的问题,提出一种改进SIFT算法,通过提取图像金字塔模型,提高了匹配的稳定性;采用RANSAC算法减少局外点的干扰,提高图像拼接质量;采用混合平均加权法消除重叠区域接缝,最终实现了图像快速精准拼接。仿真实验结果显示,改进后的SIFT算法在图像拼接稳定性和质量上均表现较好,能获得良好且完整的拼接图像。 展开更多
关键词 无人机 航拍图像 图像拼接 sift算法
下载PDF
基于渐进式多尺度Transformer的图像去雾算法
20
作者 周宇 陈志华 +1 位作者 盛斌 梁磊 《计算机科学》 CSCD 北大核心 2024年第5期117-124,共8页
现有的去雾方法难以在复原图像细节的同时保持全局信息。为了解决此问题,文中提出了一种基于渐进式多尺度Transformer(Multi Scale Progressive Transformer,MSP-Transformer)的图像去雾算法。该模型能够有效提取和利用不同尺度的雾相... 现有的去雾方法难以在复原图像细节的同时保持全局信息。为了解决此问题,文中提出了一种基于渐进式多尺度Transformer(Multi Scale Progressive Transformer,MSP-Transformer)的图像去雾算法。该模型能够有效提取和利用不同尺度的雾相关特征,实现了特征和图像的多尺度学习和融合,渐进式地从有雾图像中复原清晰图像。所提出的MSP-Transformer分为编码、解码和复原3个阶段。在编码阶段,利用基于Transformer模块的编码器将输入图像分解为不同尺度的雾图像特征,以全面表征真实有雾图像的信息损失。在解码阶段,考虑到有雾图像的不同区域存在不同尺度的信息丢失,设计了一个包含多尺度注意力机制的特征聚合模块,利用通道注意力和多尺度空间注意力来融合不同尺度的特征信息。复原阶段包含了复原模块和融合模块,首先基于多尺度特征融合的复原模块聚合不同尺度的雾相关特征以增加不同尺度特征的联系,并在每个尺度复原出清晰的无雾图像,然后将每个尺度的复原图像送入融合模块以获得最终的去雾结果。定性和定量的实验结果表明,所提出的MSP-Transformer在真实图像和合成数据集上能够实现雾的有效去除,具有良好的鲁棒性。在公开的RESIDE数据集上与11种去雾方法进行定量和定性比较,MSP-Transformer取得了最高的PSNR(39.53db)和SSIM(0.9954),并获得了良好的视觉效果。此外,消融实验也证明了MSP-Transformer中所提出的模块的有效性。 展开更多
关键词 图像去雾 多尺度 transformER 注意力机制 特征融合
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部