In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
In the first paper of this series, we directly studied the mathematicalforms, symmetry of spiral structure, and the projection of galactic discs on the images, andmeasured the pitch angles of the spiral arms and incli...In the first paper of this series, we directly studied the mathematicalforms, symmetry of spiral structure, and the projection of galactic discs on the images, andmeasured the pitch angles of the spiral arms and inclination angles of the galactic discs for 60spiral galaxies. In this second paper, we estimate the vertical scale parameters of 48 non-edge-onspiral galaxies based on the method proposed by Peng et al. and on the results given in Paper I. Aswe know, for edge-on disc galaxies we can obtain the vertical scale parameter from the photometry,once a mathematical form is specified for the vertical light distribution. For non-edge-on galaxies,some other methods have to be used. The statistical result was that the vertical scale parameter iscomparable for edge-on and non-edge-on galaxies, although it is obtained from two very differentmethods.展开更多
Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell ...Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell model,explicit expressions are derived for the bending solutions.To extract the proper values of nonlocal scale parameter,we have made molecular dynamics(MD) simulations for various radii and lengths of armchair and zigzag CNTs,the results of which are matched with those of nonlocal continuum model.It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs,which is comparable with the results of MD simulations.Moreover,exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained.The results show that nonlocal scale parameter is independent of the length of CNTs,and dependent on the radius of CNTs.展开更多
The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems ...The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters,which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.展开更多
The Penn State/ NCAR Mesoscale Model (MM5) is used to simulate the precipitation event that occurred during 1–2 May 1994 to the south of the Yangtze River. In five experiments the Kain–Fritsch scheme is made use of ...The Penn State/ NCAR Mesoscale Model (MM5) is used to simulate the precipitation event that occurred during 1–2 May 1994 to the south of the Yangtze River. In five experiments the Kain–Fritsch scheme is made use of for the subgrid–scale convective precipitation, but five different resolvable–scale microphysical parameterization schemes are employed. They are the simple super-saturation removal scheme, the warm rain scheme of Hsie et al. (1984), the simple ice scheme of Dudhia (1989), the complex mixed–phase scheme developed by Reisner et al. (1993), and the GSFC microphysical scheme with graupel. Our interest is how the various resolvable-scale schemes affect the domain-averaged precipitation, the precipitation distribution, the sea level pressure, the cloud water and the cloud ice. Through a series of experiments about a warm sector rainfall case, results show that although the different resolvable-scale scheme is used, the differences of the precipitation characteristics among all five runs are not very obvious. However, the precipitation is over-predicted and the strong mesoscale low is produced by the simple super-saturation removal scheme. The warm rain scheme with the inclusion of condensation and evaporation under-predicts the precipitation and allows the cloud water to reach the 300 hPa level. The scheme of the addition of graupel increases the resolvable-scale precipitation by about 20%-30%. The inclusion of supercooled liquid water in the grid-scale scheme does not affect significantly the results. Key words Mesoscale model - Precipitation - Resolvable-scale microphysical parameterization展开更多
Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are re...Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization(SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer(PBL)parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.展开更多
This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost so...This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost solid state INS/GPS/Magnetometer integrated navigation system has been developed that incorporates measurements from an Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer (Mag.) to provide a reliable complete navigation solution at a high output rate. The body attitude estimates, especially the heading angle, are fundamental challenges in a navigation system. Therefore targeting accurate attitude estimation is considered a significant contribution to the overall navigation error. A better estimation of the body attitude estimates leads to more accurate position and velocity estimation. For that end, the aim of this research is to exploit the magnetometer and accelerometer data in the attitude estimation technique. In this paper, a Scaled Unscented Kalman Filter (SUKF) based on the quaternion concept is designed for the INS/GPS/Mag integrated navigation system under large attitude error conditions. Simulation and experimental results indicate a satisfactory performance of the newly developed model.展开更多
A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becom...A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.展开更多
A method determining vertical scaling parameters of fractal interpolation is given in this paper. By computer experiments, it is clear that this method is very effective.
本文利用WRF(Weather Research and Forecasting)V4.0模式对2016年8月17~18日发生在青藏高原东北部青海省的一次强对流过程开展了3 km高分辨率数值模拟,基于观测小时降水数据、FY-2E卫星资料、探空资料和再分析资料等,通过四组敏感性试...本文利用WRF(Weather Research and Forecasting)V4.0模式对2016年8月17~18日发生在青藏高原东北部青海省的一次强对流过程开展了3 km高分辨率数值模拟,基于观测小时降水数据、FY-2E卫星资料、探空资料和再分析资料等,通过四组敏感性试验对比分析了在模式对流灰色尺度中使用完全显式方案(EXP试验)、传统参数化方案(KF试验)以及尺度感知参数化方案(Multi-Scale KF;MSKF试验)对对流降水模拟的差异及其影响机制。结果表明:不同的湿物理过程处理对青藏高原地区灰色尺度内对流降水强度和落区的模拟存在较大差异。KF试验模拟的18小时累积降水在降水落区和强度上较EXP和MSKF试验与实况最为接近,这与Kain-Fritsch eta(KFeta)参数化方案在降水中心区域产生的对流性降水对总降水的相对贡献较大有关。而EXP和MSKF试验模拟的降水潜热释放产生的300~400 hPa正位涡(Potential Vorticity;PV)异常,受较强的垂直风切变影响随高度向下游倾斜明显,使得其低层500 hPa正PV异常大值区较KF试验呈现出超前特征,进而导致了下游地区低层的局地风场特征、水汽通量输送及大气稳定度的改变,最终导致强降水落区较KF试验和实况向东北方向(下游)偏移。以上分析表明,在青藏高原灰色尺度内,仍然需要依赖对流参数化方案隐式地描述次网格对流过程来弥补显式方案的模拟偏差;而MSKF方案似乎对该地区的对流描述还存在一些不确定性。展开更多
The inherent mechanism of size effect in micro-sheet material behavior of plastic forming was explained by the surface layer model and theory of metal crystal plasticity. A size-dependant constitutive model based on t...The inherent mechanism of size effect in micro-sheet material behavior of plastic forming was explained by the surface layer model and theory of metal crystal plasticity. A size-dependant constitutive model based on the surface layer model was established by introducing the scale parameters and modifying the classical Hall-Petch equation. The influence of the geometric dimensions and the grain size on the flow behavior of the material was discussed using the new material constitutive model. The results show that, the flow stress decreases while the sheet metal thickness decreases when the grain size keeps constant, and the micro-sheet metal with a larger grain size is more easily to be influenced by the size effects. The material constitutive model established is validated by the stress-strain curve of the micro-sheet metal with different thicknesses derived from the tensile experiments. The rationality of the material model is verified by the fact that the calculation results are consistent with the experimental results.展开更多
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
基金Supported by the National Natural Science Foundation of China
文摘In the first paper of this series, we directly studied the mathematicalforms, symmetry of spiral structure, and the projection of galactic discs on the images, andmeasured the pitch angles of the spiral arms and inclination angles of the galactic discs for 60spiral galaxies. In this second paper, we estimate the vertical scale parameters of 48 non-edge-onspiral galaxies based on the method proposed by Peng et al. and on the results given in Paper I. Aswe know, for edge-on disc galaxies we can obtain the vertical scale parameter from the photometry,once a mathematical form is specified for the vertical light distribution. For non-edge-on galaxies,some other methods have to be used. The statistical result was that the vertical scale parameter iscomparable for edge-on and non-edge-on galaxies, although it is obtained from two very differentmethods.
基金supported by the National Natural Science Foundation of China (Grant No. 11132002)Guangdong Province (Grant No.10151064101000062)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110172110031)
文摘Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell model,explicit expressions are derived for the bending solutions.To extract the proper values of nonlocal scale parameter,we have made molecular dynamics(MD) simulations for various radii and lengths of armchair and zigzag CNTs,the results of which are matched with those of nonlocal continuum model.It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs,which is comparable with the results of MD simulations.Moreover,exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained.The results show that nonlocal scale parameter is independent of the length of CNTs,and dependent on the radius of CNTs.
基金supported by the National Natural Science Foundation of China(61703228)
文摘The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters,which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.
文摘The Penn State/ NCAR Mesoscale Model (MM5) is used to simulate the precipitation event that occurred during 1–2 May 1994 to the south of the Yangtze River. In five experiments the Kain–Fritsch scheme is made use of for the subgrid–scale convective precipitation, but five different resolvable–scale microphysical parameterization schemes are employed. They are the simple super-saturation removal scheme, the warm rain scheme of Hsie et al. (1984), the simple ice scheme of Dudhia (1989), the complex mixed–phase scheme developed by Reisner et al. (1993), and the GSFC microphysical scheme with graupel. Our interest is how the various resolvable-scale schemes affect the domain-averaged precipitation, the precipitation distribution, the sea level pressure, the cloud water and the cloud ice. Through a series of experiments about a warm sector rainfall case, results show that although the different resolvable-scale scheme is used, the differences of the precipitation characteristics among all five runs are not very obvious. However, the precipitation is over-predicted and the strong mesoscale low is produced by the simple super-saturation removal scheme. The warm rain scheme with the inclusion of condensation and evaporation under-predicts the precipitation and allows the cloud water to reach the 300 hPa level. The scheme of the addition of graupel increases the resolvable-scale precipitation by about 20%-30%. The inclusion of supercooled liquid water in the grid-scale scheme does not affect significantly the results. Key words Mesoscale model - Precipitation - Resolvable-scale microphysical parameterization
基金supported by the National Natural Science Foundation of China(Grant Nos.41505084,41275053and 41461164006)the China Meteorological Administration Special Public Welfare Research Fund(Grant Nos.GYHY201406003 and GYHY201406009)+1 种基金the Guangdong Meteorological Service Project(Grant No.2015B01)the Guangdong Province Public Welfare Research and Capacity Construction Project(Grant No.2017B020218003)
文摘Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization(SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer(PBL)parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.
文摘This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost solid state INS/GPS/Magnetometer integrated navigation system has been developed that incorporates measurements from an Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer (Mag.) to provide a reliable complete navigation solution at a high output rate. The body attitude estimates, especially the heading angle, are fundamental challenges in a navigation system. Therefore targeting accurate attitude estimation is considered a significant contribution to the overall navigation error. A better estimation of the body attitude estimates leads to more accurate position and velocity estimation. For that end, the aim of this research is to exploit the magnetometer and accelerometer data in the attitude estimation technique. In this paper, a Scaled Unscented Kalman Filter (SUKF) based on the quaternion concept is designed for the INS/GPS/Mag integrated navigation system under large attitude error conditions. Simulation and experimental results indicate a satisfactory performance of the newly developed model.
基金Acknowledgments. Thanks to Dr. Alexander MacDonald of NOAA/FSL for his support throughout this study, and to Professors William Cotton. Roger Pielke. Wayne Schubert of Colorado State University, and to Dr. Fanyou Kong of University of Oklahoma and Mr. Hu
文摘A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.
基金This paper is partly supported by the funds of Beijing Education Commission (00KG-125)and Xi'an University of Technology.
文摘A method determining vertical scaling parameters of fractal interpolation is given in this paper. By computer experiments, it is clear that this method is very effective.
文摘本文利用WRF(Weather Research and Forecasting)V4.0模式对2016年8月17~18日发生在青藏高原东北部青海省的一次强对流过程开展了3 km高分辨率数值模拟,基于观测小时降水数据、FY-2E卫星资料、探空资料和再分析资料等,通过四组敏感性试验对比分析了在模式对流灰色尺度中使用完全显式方案(EXP试验)、传统参数化方案(KF试验)以及尺度感知参数化方案(Multi-Scale KF;MSKF试验)对对流降水模拟的差异及其影响机制。结果表明:不同的湿物理过程处理对青藏高原地区灰色尺度内对流降水强度和落区的模拟存在较大差异。KF试验模拟的18小时累积降水在降水落区和强度上较EXP和MSKF试验与实况最为接近,这与Kain-Fritsch eta(KFeta)参数化方案在降水中心区域产生的对流性降水对总降水的相对贡献较大有关。而EXP和MSKF试验模拟的降水潜热释放产生的300~400 hPa正位涡(Potential Vorticity;PV)异常,受较强的垂直风切变影响随高度向下游倾斜明显,使得其低层500 hPa正PV异常大值区较KF试验呈现出超前特征,进而导致了下游地区低层的局地风场特征、水汽通量输送及大气稳定度的改变,最终导致强降水落区较KF试验和实况向东北方向(下游)偏移。以上分析表明,在青藏高原灰色尺度内,仍然需要依赖对流参数化方案隐式地描述次网格对流过程来弥补显式方案的模拟偏差;而MSKF方案似乎对该地区的对流描述还存在一些不确定性。
基金Project(50975163)supported by the National Natural Science Foundation of ChinaProject(IRT0931)supported by Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
文摘The inherent mechanism of size effect in micro-sheet material behavior of plastic forming was explained by the surface layer model and theory of metal crystal plasticity. A size-dependant constitutive model based on the surface layer model was established by introducing the scale parameters and modifying the classical Hall-Petch equation. The influence of the geometric dimensions and the grain size on the flow behavior of the material was discussed using the new material constitutive model. The results show that, the flow stress decreases while the sheet metal thickness decreases when the grain size keeps constant, and the micro-sheet metal with a larger grain size is more easily to be influenced by the size effects. The material constitutive model established is validated by the stress-strain curve of the micro-sheet metal with different thicknesses derived from the tensile experiments. The rationality of the material model is verified by the fact that the calculation results are consistent with the experimental results.