期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Scale effect removal and range migration correction for hypersonic target coherent detection
1
作者 WU Shang SUN Zhi +4 位作者 JIANG Xingtao ZHANG Haonan DENG Jiangyun LI Xiaolong CUI Guolong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期14-23,共10页
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit... The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT. 展开更多
关键词 hypersonic target detection coherent integration(CI) scale effect(SE)removal range migration(RM)correction scaled location rotation transform(ScLRT)
下载PDF
Experimental Research on Antiscale and Scale Removal by Ultrasonic Cavitation 被引量:9
2
作者 LI Hong-xia,HUAI Xiu-lan,CAI Jun and LIANG Shi-qiangInstitute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing,100190,China Professor 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第1期65-73,共9页
Aiming at the scale problem in heat-transfer equipments, experimental investigation on antiscale and scale removalby ultrasonic cavitation is performed. By means of microscopic magnifying photography system, thesedime... Aiming at the scale problem in heat-transfer equipments, experimental investigation on antiscale and scale removalby ultrasonic cavitation is performed. By means of microscopic magnifying photography system, thesedimentary phenomenon can be observed. The experimental research reveals the influencing rule of acoustic intensity,cavitational distance, liquid temperature and solution concentration. The experimental results indicate thatliquid temperature has different effects on antiscale and scale removal. Different experimental liquids are used forantiscale and scale removal experiments. The results show that every liquid has a respective Cavitational activetemperature. When ultrasonic is used for antiscale, the smaller acoustic intensity is, the better effect is. But, whenultrasonic is used for scale removal, acoustic intensity has a reverse influence. In addition, biggish solution concentrationis propitious to antiscale for long-time running. Distance of test sample to ultrasonic transducer alsohas certain influence on antiscale and scale removal. The smaller the distance to ultrasonic transducer is, the bettereffects antiscale and scale removal have. 展开更多
关键词 ultrasonic cavitation acoustic cavitation antiscale scale removal acoustic intensity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部