Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted ...Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61573262,and 61303061)
文摘Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.