Computer Automated Tomography has been shown to be a valuable tool in production research because it provides a non-destructive method to identify and evaluate the internal structural characteristics of reservoir rock...Computer Automated Tomography has been shown to be a valuable tool in production research because it provides a non-destructive method to identify and evaluate the internal structural characteristics of reservoir rock. In CT scan, Hounsfield Unit (HU) is proportional to the degree of X-ray attenuation by the tissue. The aim of the present study was to introduce the method to estimate porosity which is one of physical parameters of reservoir rock though HU data. In this study, an Image J software was used to extract Hounsfield Unit data and calibrate by standard material’s density. This method provides the ability of using CT Scanner in advanced reservoir characterization and flow test experiments.展开更多
Differential scanning calorimetry (DSC) provides easy screening for thermal hazard evaluation. Here, we investigate the difference between using glass and stainless-steel vessels on the DSC measurement of exothermic d...Differential scanning calorimetry (DSC) provides easy screening for thermal hazard evaluation. Here, we investigate the difference between using glass and stainless-steel vessels on the DSC measurement of exothermic decomposition energy (QDSC) for 41 chemical substances (containing nitro, halogen, peroxide, and sulfur groups, and hydrazine bonds). Two borosilicate glass vessels (capillary and ampule) and one stainless-steel vessel were used. All QDSC values obtained were investigated with reference to the permissible fluctuation range specified by the ASTM (American Society for Testing and Materials) international Both glass vessels produced very similar QDSC values, despite different sample scales. The QDSC values obtained with the glass vessels were generally roughly within the variation tolerance range of the stainless-steel vessel. Notable exceptions were halogen- or sulfur-containing compounds;these exhibited smaller QDSC values with glass vessels in almost all cases. We will investigate whether certain structures in compounds react with stainless steel. The vessel material choice is crucial in evaluating the true reactivity of a substance.展开更多
文摘Computer Automated Tomography has been shown to be a valuable tool in production research because it provides a non-destructive method to identify and evaluate the internal structural characteristics of reservoir rock. In CT scan, Hounsfield Unit (HU) is proportional to the degree of X-ray attenuation by the tissue. The aim of the present study was to introduce the method to estimate porosity which is one of physical parameters of reservoir rock though HU data. In this study, an Image J software was used to extract Hounsfield Unit data and calibrate by standard material’s density. This method provides the ability of using CT Scanner in advanced reservoir characterization and flow test experiments.
文摘Differential scanning calorimetry (DSC) provides easy screening for thermal hazard evaluation. Here, we investigate the difference between using glass and stainless-steel vessels on the DSC measurement of exothermic decomposition energy (QDSC) for 41 chemical substances (containing nitro, halogen, peroxide, and sulfur groups, and hydrazine bonds). Two borosilicate glass vessels (capillary and ampule) and one stainless-steel vessel were used. All QDSC values obtained were investigated with reference to the permissible fluctuation range specified by the ASTM (American Society for Testing and Materials) international Both glass vessels produced very similar QDSC values, despite different sample scales. The QDSC values obtained with the glass vessels were generally roughly within the variation tolerance range of the stainless-steel vessel. Notable exceptions were halogen- or sulfur-containing compounds;these exhibited smaller QDSC values with glass vessels in almost all cases. We will investigate whether certain structures in compounds react with stainless steel. The vessel material choice is crucial in evaluating the true reactivity of a substance.