The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomi...The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomicrographs showing the characteristics of the sub-crack development were taken using a scanning electron microscope (SEM). From these photomicrographs, the real-time images showing the initiation, growth and coalescence of sub-cracks and micro-cracks in the sandstone specimens were obtained and the effects of loading level as well as grain boundaries on the development of cracks were analyzed. Second, the intensity images of the sandstone specimen surface were captured from the observations of the SEM corresponding to different loading levels. Then correlation computation was carried out for the sequential pairs of intensity images to evaluate the displacement components, as well as the strain field. The results show that the deformation varies in different areas separated by sub-cracks during rock damage processes.展开更多
基金supported by the NaturalScience Foundation of China(contract no.40821062)
文摘The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomicrographs showing the characteristics of the sub-crack development were taken using a scanning electron microscope (SEM). From these photomicrographs, the real-time images showing the initiation, growth and coalescence of sub-cracks and micro-cracks in the sandstone specimens were obtained and the effects of loading level as well as grain boundaries on the development of cracks were analyzed. Second, the intensity images of the sandstone specimen surface were captured from the observations of the SEM corresponding to different loading levels. Then correlation computation was carried out for the sequential pairs of intensity images to evaluate the displacement components, as well as the strain field. The results show that the deformation varies in different areas separated by sub-cracks during rock damage processes.