期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
EFFECT OF INTERNAL FIXATION PLATES ON MICROCIRCULATION IN UNDER-PLATE CORTICAL BONES MICROANGIOGRAPHY AND SCANNING ELECTRONMICROSCOPY 被引量:1
1
作者 王友 戴克戎 《Chinese Medical Journal》 SCIE CAS CSCD 1994年第12期51-55,共5页
To elucidate the effect of the internal fixation plates on the local bone blood sapply, we used microangiography and scanning electron microscopy to observe the morphological changes of microcirculation in the cortica... To elucidate the effect of the internal fixation plates on the local bone blood sapply, we used microangiography and scanning electron microscopy to observe the morphological changes of microcirculation in the cortical bones obtained from intact rabbit tibiae on which plates of two different stiffness had been fixed for comparison. The results indicated that both rigid stainless steel plate and less rigid methyl methacrylate plate could induce the bone microcirculation under the plate to undergo a process from early depression to late reactive recruitment. The features of the microcircuiation recruitment such as vascular number, arrangement and dilatation varied with plates of different stiffness and were more obvious in the cortex fixed by rigid stainless steel plate. 展开更多
关键词 In MMA EFFECT OF INTERNAL FIXATION PLATES ON MICROCIRCULATION IN UNDER-PLATE CORTICAL BONES MICROANGIOGRAPHY AND scanning electronmicroscopy
原文传递
Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques
2
作者 Zhang Yue-Fei Wang Li +6 位作者 R.Heiderhoff A.K.Geinzer Wei Bin Ji Yuan Han Xiao-Dong L.J.Balk Zhang Ze 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期374-379,共6页
The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based t... The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the A1N sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3w method. A thermal conductivity of 308 W/m-K within grains corresponding to that of high-purity single crystal A1N is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. 展开更多
关键词 thermal conductivity A1N ceramics scanning thermal microscopy scanning electronmicroscopy
下载PDF
Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO_(3) thin film
3
作者 Wooseon Choi Bumsu Park +10 位作者 Jaejin Hwang Gyeongtak Han Sang-Hyeok Yang Hyeon Jun Lee Sung Su Lee Ji Young Jo Albina Y.Borisevich Hu Young Jeong Sang Ho Oh Jaekwang Lee Young-Min Kim 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期57-66,共10页
The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is un... The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs. 展开更多
关键词 BiFeO_(3) scanning transmission electronmicroscopy electron holography multiferroic material strain mapping
下载PDF
Effect of Nano-silica Modification on the Tensile Property of SMA/GF/CF/Epoxy Super Hybrid Woven Fabric Composites
4
作者 赵世成 梁文彦 +1 位作者 WANG Zhenqing LEI Hongshuai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1293-1300,共8页
Tensile properties of epoxy casts together with shape memory alloy(SMA), glass(GF) and carbon(CF) woven fabric reinforced epoxy matrix super hybrid composites were investigated, respectively. In order to enhance... Tensile properties of epoxy casts together with shape memory alloy(SMA), glass(GF) and carbon(CF) woven fabric reinforced epoxy matrix super hybrid composites were investigated, respectively. In order to enhance the mechanical strength of this advanced material, two categories of modifications including matrix blending and fiber surface coating by nano-silica were studied. Scanning electron microscopy(SEM) and fiber pull-out tests were adopted to complement the experimental results, respectively. Experimental results reveal that the toughness of epoxy matrix is enhanced significantly by adding 2 wt% nano-silica. The failure mechanism of SMA reinforced hybrid composites is different from that of GF/CF/epoxy composites. Compared with the matrix modification, the fibers modified by coating nano-silica on the surface have better tensile performances. Moreover, the fiber pull-out test results also indicate that composites with fiber surface modification have better interfacial performances. The modification method used in this paper can help to enhance the tensile performance of the mentioned composite materials in real engineering fields. 展开更多
关键词 SMA alloys hybrid composites tensile property MODIFICATION scanning electronmicroscopy (SEM)
下载PDF
Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates 被引量:1
5
作者 Dongqi Li Jin Zhang +8 位作者 Yujun He Yan Qin Yang Wei Peng Liu Lina Zhang Jiaping Wang Qunqing Li Shoushan Fan Kaili Jiang 《Nano Research》 SCIE EI CAS CSCD 2017年第5期1804-1818,共15页
Scanning electron microscopy (SEM) plays an indispensable role in nanoscience and nanotechnology because of its high efficiency and high spatial resolution in characterizing nanomaterials. Recent progress indicates ... Scanning electron microscopy (SEM) plays an indispensable role in nanoscience and nanotechnology because of its high efficiency and high spatial resolution in characterizing nanomaterials. Recent progress indicates that the contrast arising from different conductivities or bandgaps can be observed in SEM images if single-walled carbon nanotubes (SWCNTs) are placed on a substrate. In this study, we use SWCNTs on different substrates as model systems to perform SEM imaging of nanomaterials. Substantial SEM observations are conducted at both high and low acceleration voltages, leading to a comprehensive understanding of the effects of the imaging parameters and substrates on the material and surface-charge signals, as well as the SEM imaging. This unified picture of SEM imaging not only furthers our understanding of SEM images of SWCNTs on a variety of substrates but also provides a basis for developing new imaging recipes for other important nanomaterials used in nanoelectronics and nanophotonics. 展开更多
关键词 single-walled carbonnanotube scanning electronmicroscopy IMAGING surface charging
原文传递
Corrosion Study of Base Material and Welds of a Ni-Cr-Mo-W Alloy 被引量:3
6
作者 Ajit Mishra 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第4期326-332,共7页
Alloys containing chromium (Cr) and molybdenum (Mo), as the major alloying elements, are widely used in various industries where the material experiences corrosive environments. Chromium (Cr), when added in an o... Alloys containing chromium (Cr) and molybdenum (Mo), as the major alloying elements, are widely used in various industries where the material experiences corrosive environments. Chromium (Cr), when added in an optimum amount, forms a Cr203 passive film which protects the underlying metal in aggressive solutions. Molybdenum (Mo) forms its oxides in the low pH solutions, thus, enhances the uniform corrosion resistance of an alloy in reducing acids and assists in inhibition to localized corrosion. Minor alloying elements, like tungsten (W) and copper (Cu), also improve the overall corrosion resistance of an alloy in specific solutions. In the present study, corrosion resistance behavior of commercial iron- based alloys (316L SS, 254 SMO and 20Cb3) and nickel-based alloys (Mone1400, Alloy 625 and C-276) was studied in the acidic solutions. While the corrosion behavior of wrought alloys has been widely studied, there is little to no information on the corrosion performance of their welds, typically being the weak regions for corrosion initiation and propagation. Therefore, an attempt was undertaken to investigate the uniform and localized corrosion performance of base metal, simulated heat-affected zone and all-weld-metal samples of a Ni-Cr-Mo-W alloy, C-276. The study was conducted in aggressive acidic solutions. Various corrosion and surface analytical techniques were utilized to analyze the results. 展开更多
关键词 Iron-chromium-molybdenum Nickel-chromium-molybdenum-tungsten All-weld-metal Heat-affected-zone ACIDS Acidified ferric chloride POTENTIODYNAMIC scanning electronmicroscopy (SEM)
原文传递
Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM
7
作者 Dongqi Li Yang Wei +5 位作者 Jin Zhang Jiangtao Wang Yinghong Lin Peng Liu Shoushan Fan Kaili Jiang 《Nano Research》 SCIE EI CAS CSCD 2017年第6期1896-1902,共7页
Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices, as SWCNTs can be either metallic or semiconducting in behavior. The films greatly benef... Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices, as SWCNTs can be either metallic or semiconducting in behavior. The films greatly benefit from characterization technologies that can efficiently identify and group SWCNTs based on metallic or semiconducting natures with high spatial resolution. Here, we developed a facile imaging technique using scanning electron microscopy (SEM) to discriminate between semiconducting and metallic SWCNTs based on black and white colors. The average width of the single-SWCNT image was reduced to -9 nm, -1/5 of previous imaging results. These achievements were attributed to reduced surface charging on the SiOdSi substrate under enhanced accelerating voltages. With this identification technique, a CNT transistor with an on/off ratio of 〉10s was fabricated by identifying and etching out the white metallic SWCNTs. This improved SEM imaging technique can be widely applied in evaluating the selective growth and sorting of SWCNTs. 展开更多
关键词 single-walled carbonnanotube scanning electronmicroscopy surface charging TRANSISTOR
原文传递
Effect of Compression with Oscillatory Torsion Processing on Structure and Properties of Cu 被引量:1
8
作者 Kinga Rodak Jacek Pawlicki 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第11期1083-1088,共6页
The results presented in this study were concerned with microstructures and mechanical properties of poly- crystalline Cu subjected to plastic deformation by a compression with oscillatory torsion process. Different d... The results presented in this study were concerned with microstructures and mechanical properties of poly- crystalline Cu subjected to plastic deformation by a compression with oscillatory torsion process. Different deformation parameters of the compression with oscillatory torsion process were adopted to study their effects on the microstructure and mechanical properties. The deformed microstructure was characterized quantitatively by electron backscattered diffraction (EBSD) and scanning transmission electron microscopy (STEM). Mechanical properties were determined on an MTS QTest/10 machine equipped with digital image correlation. From the experimental results, processes performed at high compression speed and high torsion frequency are recommended for refining the grain size. The size of structure elements, such as average grain size (D) and subgrain size (d), reached 0.42 μm and 0.30 μm, respectively, and the fraction of high angle boundaries was 35% when the sample was deformed at a torsion frequency f = 1.6 Hz and compression rate v= 0.04 mm/s. These deformation parameters led to an improvement in the strength properties. The material exhibited an ultimate tensile strength (UTS) of 434 MPa and a yield strength (YS) of 418 MPa. These values were about two times greater than those of the initial state. 展开更多
关键词 Severe plastic deformation Copper Fine-grained microstructure Electronbackscattered diffraction (EBSD) scanning transmission electronmicroscopy (STEM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部