期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Temperature Field in Laser Line Scanning Thermography: Analytical Calculation and Experiment
1
作者 Yin Li Yuanjia Song +2 位作者 Zhengwei Yang Haijun Jiang Bowen Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期1001-1018,共18页
The temperature field in laser line scanning thermography is investigated comprehensively in this work,including analytical calculation and experiment.Firstly,the principle of laser line scanning thermography is analy... The temperature field in laser line scanning thermography is investigated comprehensively in this work,including analytical calculation and experiment.Firstly,the principle of laser line scanning thermography is analyzed.On this basis,a physical laser line scanning model is proposed.Afterwards,based on Fourier transform(FT)and segregation variablemethod(SVM),the heat conduction differential equation in laser line scanning thermography is derived in detail.The temperature field of the composite-based coatings model with defects is simulated numerically.The results show that the laser line scanning thermography can effectively detect the defects in the model.The correctness of the analytical calculation is verified by comparing the surface temperature distribution obtained by analytical calculation and numerical simulation.Additionally,an experiment is carried out and the changeable surface temperature obtained by analytical calculation is compared with the experimental results.It shows that the error of maximum temperature obtained by analytical calculation and by experiment is 8%with high accuracy,which proves the correctness of analytical calculation and enriches the theoretical foundation of laser line scanning thermography. 展开更多
关键词 Temperature field laser line scanning thermography analytical calculation numerical simulation EXPERIMENT
下载PDF
Improvement of Binocular Reconstruction Algorithm for Measuring 3D Pavement Texture Using a Single Laser Line Scanning Constraint
2
作者 Yuanyuan Wang RuiWang +1 位作者 Xiaofeng Ren Junan Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1951-1972,共22页
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was... The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation. 展开更多
关键词 3D pavement texture binocular reconstruction algorithm single laser line scanning constraint improved stereo matching
下载PDF
Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature
3
作者 E Du Shuhao Shen +1 位作者 Anqi Qiu Nanguang Chen 《Opto-Electronic Advances》 SCIE EI 2022年第2期22-32,共11页
Laser speckle imaging has been widely used for in-vivo visualization of blood perfusion in biological tissues.However,existing laser speckle imaging techniques suffer from limited quantification accuracy and spatial r... Laser speckle imaging has been widely used for in-vivo visualization of blood perfusion in biological tissues.However,existing laser speckle imaging techniques suffer from limited quantification accuracy and spatial resolution.Here we re-port a novel design and implementation of a powerful laser speckle imaging platform to solve the two critical limitations.The core technique of our platform is a combination of line scan confocal microscopy with laser speckle autocorrelation imaging,which is termed Line Scan Laser Speckle Autocorrelation Imaging(LS-LSAI).The technical advantages of LS-LSAI include high spatial resolution(~4.4μm)for visualizing and quantifying blood flow in microvessels,as well as video-rate imaging speed for tracing dynamic flow. 展开更多
关键词 laser speckle AUTOCORRELATION CONFOCAL line scan FLOW
下载PDF
On-line full scan inspection of particle size and shape using digital image processing 被引量:9
4
作者 Chih-Wei Liao Jiun-Hung Yu Yeong-Shin Tarng 《Particuology》 SCIE EI CAS CSCD 2010年第3期286-292,共7页
An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system i... An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system is composed of a particle separation module, an image acquisition module, an image processing module, and an electric control module. Experiments are carried out using non-uniform 0.1 mm particles. The main advantage of this system consists of a full analysis of particles without any overlap or miss, thus improving the Area Scan Charge Coupled Device (CCD) acquisition problems. Particle size distribution, roundness, and sphericity can be obtained using the system with a deviation of repeated precision of around ±1%. The developed system is shown to be also convenient and versatile for any particle size and shape for academic and industrial users. 展开更多
关键词 Particle size distribution Particle characterization Image analysis line scan CCD Automatic inspection
原文传递
Surface micro-texture on sapphire fabricated by laser ablation trajectory regulation
5
作者 Quanli ZHANG Qiwen WANG +2 位作者 Zhen ZHANG Yucan FU Jiuhua XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期525-536,共12页
Fabrication of the surface micro-texture on the C-plane sapphire is undertaken by a355 nm Ultraviolet(UV)pulsed laser.The surface micro-textures of sapphire with different laser scanning line spacing ranging from 10 l... Fabrication of the surface micro-texture on the C-plane sapphire is undertaken by a355 nm Ultraviolet(UV)pulsed laser.The surface micro-textures of sapphire with different laser scanning line spacing ranging from 10 lm to 100 lm are obtained,where the selection range of scanning line spacing is controlled in the range of the groove width and plasma width to obtain a surface of high Peak-Valley(PV)value.A reasonable processing order is proposed to manufacture different types of surface micro-textures on sapphire by laser ablation trajectory regulation.In the multiple-passes laser ablation of sapphire by the UV nanosecond pulsed laser,the scanning lines in each direction is treated as once scanning.On this basis,the multiple processing can be carried out to avoid the influence of the subsequent scanning on the machined groove.In addition,the effect of different scanning line spacing on the PV value is quantified and different types of surface microtextures on sapphire,including the squares,the rhombuses and the hexagons,are successfully fabricated,which can be applied in the friction reduction or anti-reflection field. 展开更多
关键词 Laser ablation trajectory SAPPHIRE scanning line spacing Surface micro-texture PV values
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部