Cone-beam computed tornography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence...Cone-beam computed tornography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction Calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the fiat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.展开更多
Hamamatsu SHR74000 is a newly designed full three-dimensional (3D) whole body positron emission tomography (PET) scanner with small crystal size and large field of view (FOV).With the improvement of sensitivity,...Hamamatsu SHR74000 is a newly designed full three-dimensional (3D) whole body positron emission tomography (PET) scanner with small crystal size and large field of view (FOV).With the improvement of sensitivity,the scatter events increase significantly at the same time,especially for large objects.Monte Carlo simulations help us to understand the scatter phenomena and provide good references for scatter correction. In this paper,we introduce an effective scatter correction method based on single scatter simulation for the new PET scanner,which accounts for the full 3D scatter correction.With the results from Monte Carlo simulations,we implement a new scale method with special concentration on scatter events from outside the axial FOV and multiple scatter events.The effects of scatter correction are investigated and evaluated by phantom experiments;the results show good improvements in quantitative accuracy and contrast of the images,even for large objects.展开更多
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in ...The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.展开更多
Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this ...Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images.展开更多
Scatter correction in single photon emission computed tomography (SPECT) has been focused on either using multiple-window acquisition technique or the scatter modeling technique in iterative image reconstruction. We...Scatter correction in single photon emission computed tomography (SPECT) has been focused on either using multiple-window acquisition technique or the scatter modeling technique in iterative image reconstruction. We propose a technique that uses :only the emission data for scatter correction in SPECT. We assume that the scatter data can be approximated by convolving the primary data with a scatter kernel followed by the normalization using the scatter-to-primary ratio (SPR), Since the emission data is the superposition of the primary data and the scatter data, the convolution normalization process approximately results in the sum of the scatter data and a convolved version of scatter data with the kernel. By applying a proper scaling factor, we can make the estimation approximately equal to or less than the scatter data anywhere in the projection domain. Phantom and patient cardiac SPECT studies show that using the proposed emission-based scatter estimation can effectively reduce the scatter-introduced background in the reconstructed images. And additionally, the computational time for scatter correction is negligible as compared to no scatter correction in iterative image reconstruction.展开更多
Method: Use Multiple Scattering Correction to eliminate the interference of scattering on spectrum in the process of field measurement so as to improve the accuracy of prediction model of tree canopy nitrogen content....Method: Use Multiple Scattering Correction to eliminate the interference of scattering on spectrum in the process of field measurement so as to improve the accuracy of prediction model of tree canopy nitrogen content. Apple trees in Qixia of Yantai City were taken as the test material. The spectral reflectivity of apple tree canopy went through the First Derivative (FD) and Multiple Scattering Correction (MSC) plus first derivative, respectively. The correlation coefficients were calculated between spectral reflectivity and nitrogen content. The Support Vector Machine (SVM) method was used to establish the prediction model. The result indicates that the MSC pre-processing can improve the correlation between spectral reflectivity and nitrogen content. The SVM model with MSC + FD pre-processing was a good way to predict the nitrogen content. The calibration R<sup>2</sup> of the model was 0.746;the validation R2 was 0.720;and its RMSE was 0.452 g·kgˉ<sup>1</sup>. MSC can commendably eliminate scattering error to improve the prediction accuracy of prediction model.展开更多
The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values i...The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared(NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths(412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scatteringcorrection methods.展开更多
A scattering correction method for a panel detector based cone beam computed tomography system is presented. First, the x-ray spectrum of the system is acquired by using the Monte Carlo simulation method. Secondly, sc...A scattering correction method for a panel detector based cone beam computed tomography system is presented. First, the x-ray spectrum of the system is acquired by using the Monte Carlo simulation method. Secondly, scattered photon distribution is calculated and stored as correction matrixes by using the Monte Carlo simulation method according to scanned objects and computed tomography system specialties. Thirdly, scattered photons are removed from projection data by correction matrixes. A comparison of reconstruction image between before and after scattering correction demonstrates that the scattering correction method is effective for the panel detector based cone beam computed tomography system.展开更多
Fast neutron tomography has been established as an inspection and detection tool at the NECTAR facility at the FRM-II reac- tor. Scattered neutrons from the object become a major disturbance and bring in artifacts and...Fast neutron tomography has been established as an inspection and detection tool at the NECTAR facility at the FRM-II reac- tor. Scattered neutrons from the object become a major disturbance and bring in artifacts and deviations in reconstruction re- suits, especially for hydrogenous material object. In this article, an iterative scattering correction method for fast neutron to- mography was proposed. In each loop of iteration the scattering component of the projections will be simulated by Mon- te-Carlo program MCNPX based on the previous reconstruction result and then it will be subtracted from original projections. The differences between scattering components at different perspectives were quantitatively evaluated and an average scatter- ing component image was used for all projections finally. Smooth and uniform slices with more clear edges were obtained and the new reconstructed attenuation coefficients are quite close to the real one compared to the results without scattering correc- tion, in which case the relative error of the reconstructed attenuation coefficients is about 10%-30%.展开更多
基金supported by the National Science and Technology Major Project of the Ministry of Industry and Information Technology of China(Grant No.2012ZX04007021)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.51105315)+1 种基金the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2013JM7003)the Northwestern Polytechnical University Foundation for Fundamental Research,China(Grant Nos.3102014KYJD022 and JC20120226)
文摘Cone-beam computed tornography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction Calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the fiat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.
基金Project supported by the National Natural Science Foundation of China (Grant No 60772125)the Key Foundation of Guangdong Province of China (Grant No 07117784)Scientific Plan of Zhejiang Province of China (Grant No 2008C23060)
文摘Hamamatsu SHR74000 is a newly designed full three-dimensional (3D) whole body positron emission tomography (PET) scanner with small crystal size and large field of view (FOV).With the improvement of sensitivity,the scatter events increase significantly at the same time,especially for large objects.Monte Carlo simulations help us to understand the scatter phenomena and provide good references for scatter correction. In this paper,we introduce an effective scatter correction method based on single scatter simulation for the new PET scanner,which accounts for the full 3D scatter correction.With the results from Monte Carlo simulations,we implement a new scale method with special concentration on scatter events from outside the axial FOV and multiple scatter events.The effects of scatter correction are investigated and evaluated by phantom experiments;the results show good improvements in quantitative accuracy and contrast of the images,even for large objects.
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
基金Supported by Graduate Student Research Foundation of Jiangsu Province (CX10B-079Z)
文摘The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.
基金Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China(2012ZX04007021)Aeronautical Science Fund of China(2014ZE53059)Fundamental Research Funds for Central Universities of China(3102014KYJD022)
文摘Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images.
文摘Scatter correction in single photon emission computed tomography (SPECT) has been focused on either using multiple-window acquisition technique or the scatter modeling technique in iterative image reconstruction. We propose a technique that uses :only the emission data for scatter correction in SPECT. We assume that the scatter data can be approximated by convolving the primary data with a scatter kernel followed by the normalization using the scatter-to-primary ratio (SPR), Since the emission data is the superposition of the primary data and the scatter data, the convolution normalization process approximately results in the sum of the scatter data and a convolved version of scatter data with the kernel. By applying a proper scaling factor, we can make the estimation approximately equal to or less than the scatter data anywhere in the projection domain. Phantom and patient cardiac SPECT studies show that using the proposed emission-based scatter estimation can effectively reduce the scatter-introduced background in the reconstructed images. And additionally, the computational time for scatter correction is negligible as compared to no scatter correction in iterative image reconstruction.
文摘Method: Use Multiple Scattering Correction to eliminate the interference of scattering on spectrum in the process of field measurement so as to improve the accuracy of prediction model of tree canopy nitrogen content. Apple trees in Qixia of Yantai City were taken as the test material. The spectral reflectivity of apple tree canopy went through the First Derivative (FD) and Multiple Scattering Correction (MSC) plus first derivative, respectively. The correlation coefficients were calculated between spectral reflectivity and nitrogen content. The Support Vector Machine (SVM) method was used to establish the prediction model. The result indicates that the MSC pre-processing can improve the correlation between spectral reflectivity and nitrogen content. The SVM model with MSC + FD pre-processing was a good way to predict the nitrogen content. The calibration R<sup>2</sup> of the model was 0.746;the validation R2 was 0.720;and its RMSE was 0.452 g·kgˉ<sup>1</sup>. MSC can commendably eliminate scattering error to improve the prediction accuracy of prediction model.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFB0501502,2016YFC1400903,2016YFB0500304)the National Natural Science Foundation of China(Nos.91638201,41276184,41325004,41471308,41571361)+1 种基金the High Resolution Earth Observation Systems of National Science and Technology Major Projects(No.41-Y20A31-9003-15/17)the Director Foundation of Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(No.Y6SJ2100CX)
文摘The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared(NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths(412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scatteringcorrection methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60672104 and 10527003)the National Basic Research Program of China(Grant No.2006CB705705)the Joint Research Foundation of Beijing Education Committee, China(Grant No.JD100010607)
文摘A scattering correction method for a panel detector based cone beam computed tomography system is presented. First, the x-ray spectrum of the system is acquired by using the Monte Carlo simulation method. Secondly, scattered photon distribution is calculated and stored as correction matrixes by using the Monte Carlo simulation method according to scanned objects and computed tomography system specialties. Thirdly, scattered photons are removed from projection data by correction matrixes. A comparison of reconstruction image between before and after scattering correction demonstrates that the scattering correction method is effective for the panel detector based cone beam computed tomography system.
基金supported by the Academic Exchange Fund of Peking University Graduate Schoolthe National Basic Research Program of China(Grant No.2010CB833106)
文摘Fast neutron tomography has been established as an inspection and detection tool at the NECTAR facility at the FRM-II reac- tor. Scattered neutrons from the object become a major disturbance and bring in artifacts and deviations in reconstruction re- suits, especially for hydrogenous material object. In this article, an iterative scattering correction method for fast neutron to- mography was proposed. In each loop of iteration the scattering component of the projections will be simulated by Mon- te-Carlo program MCNPX based on the previous reconstruction result and then it will be subtracted from original projections. The differences between scattering components at different perspectives were quantitatively evaluated and an average scatter- ing component image was used for all projections finally. Smooth and uniform slices with more clear edges were obtained and the new reconstructed attenuation coefficients are quite close to the real one compared to the results without scattering correc- tion, in which case the relative error of the reconstructed attenuation coefficients is about 10%-30%.