To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is ...To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.展开更多
受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×...受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.展开更多
This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the pol...This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.展开更多
Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatil...Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.展开更多
作为地球磁层中一种分布广泛的电磁波,电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)是地球辐射带相对论电子的重要损失机制.EMIC波通常呈现H+、He+和O+三种不同频段,不同频段对相对论电子的散射效应和损失时间尺度...作为地球磁层中一种分布广泛的电磁波,电磁离子回旋波(Electromagnetic ion cyclotron waves,简称EMIC波)是地球辐射带相对论电子的重要损失机制.EMIC波通常呈现H+、He+和O+三种不同频段,不同频段对相对论电子的散射效应和损失时间尺度大不相同.准线性理论是定量分析不同频段EMIC波对地球辐射带相对论电子散射效应的重要工具,我们利用基于准线性理论开发的Full Diffusion Code(FDC),分别计算了H^(+)、He^(+)、O^(+)三种频段EMIC波在不同空间范围、背景等离子体条件以及不同传播角模型下对辐射带相对论电子的弹跳平均投掷角散射系数,建立了L=1.5~7,背景等离子体参数α*(=f_(pe)/f_(ce))=6~30范围内的多频段EMIC波电子散射系数矩阵库.进而,我们计算了辐射带相对论电子在不同频段EMIC波散射作用下的损失时间尺度,获得了在不同磁层条件下EMIC波损失沉降相对论电子的定量信息.这些结果对于提升地球辐射带动力学过程建模水平、开展辐射带空间天气预报具有重要价值.展开更多
基金Project(50735007) supported by the National Natural Science Foundation of ChinaProject(2010ZX04001-151) supported by Important National Science & Technology Specific Program of China
文摘To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.
文摘受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20070701010)
文摘This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.
基金supported by the Project of Shanghai Committee of Science and Technology under Grant No.10511500500ZTE Industry-Academia-Research Cooperation Funds
文摘Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.