This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the pol...This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.展开更多
The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed...The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed theoretically for better studying of the random law of measured results. Moreover, a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air, standard particles, and background noise. Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison. In addition, the statistical laws of three typical objects and the relations between them are discussed in detail. The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.展开更多
A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f...A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this展开更多
The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov p...The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov processes has been consid- ered. Local Gaussian models can be used to describe the process inside each phase state. The possibility of describing the sta- tistics of reflections from the sea and the refractive index by using Kravchenko finite functions has been shown for the first time.展开更多
The paper presents the microwave signal processing method using MATLAB based on the result of microwave imaging system simulation developed using Computer Simulation Technology (CST). The simulation system contains a ...The paper presents the microwave signal processing method using MATLAB based on the result of microwave imaging system simulation developed using Computer Simulation Technology (CST). The simulation system contains a transmitting/receiving antenna, human brain and a tumor inside the brain model. The source signal, microwave signal operates from 1 to 10 GHz. The generated scattering parameters (S-parameters) are in frequency domain form. This paper describes in detail regarding the signal conversion from frequency domain to time domain through proposed Inverse Fast Fourier Transform (IFFT) method as well as the noise filtering process. Peaks detection process was performed in order to identify the time delay of the reflection points at different Y-axis展开更多
A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the ...A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the GPS signal distortion. It is shown that the behavior of satellite signals is associated with the spectral characteristics of the UHF radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere. The foundations of the quantum theory of distortion and delay of GPS satellite signal propagation through D and E atmospheric layers are analyzed and expounded. The problem reduces to the resonant scattering of photons, moving in the electromagnetic field of the signal, to the Rydberg complexes populated in a two-temperature non-equilibrium plasma. The processes of creation of additional photons because of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the Earth’s upper atmosphere, firstly earlier proposed by the same authors, is described in detail. The general problems of the theory and possible theoretical and applied consequences are discussed. It is explained that two main processes occurring here, are directly related to the resonant quantum properties of the propagation medium. The first process leads to a direct increase in the power of the received signal, and second—to a shift in the signal carrier frequency??and the time delay??of its propagation. The main reasons of the processes are scattering of the Rydberg electron by the ion core and presence of the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. The main purposes of our investigation are the physical justification of the formation of parameters ?and??using the quantum dynamics of the electron behavior in the intermediate state of the Rydberg complex A**M and the estimation of the quantities of??and??in the elementary act of elastic (Rayleigh) photon scattering.展开更多
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real ti...Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20070701010)
文摘This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.
文摘The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed theoretically for better studying of the random law of measured results. Moreover, a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air, standard particles, and background noise. Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison. In addition, the statistical laws of three typical objects and the relations between them are discussed in detail. The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.
文摘A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this
基金The Joint Grant of the National Academy of Sciences of Ukraine(NASU)and the Russian Foundation for Basic Research(RFBR)2012-2013(No.12-02-90425)The Task Comprehensive Program of NAS U on the Scientific Space Research 2012-2016
文摘The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov processes has been consid- ered. Local Gaussian models can be used to describe the process inside each phase state. The possibility of describing the sta- tistics of reflections from the sea and the refractive index by using Kravchenko finite functions has been shown for the first time.
文摘The paper presents the microwave signal processing method using MATLAB based on the result of microwave imaging system simulation developed using Computer Simulation Technology (CST). The simulation system contains a transmitting/receiving antenna, human brain and a tumor inside the brain model. The source signal, microwave signal operates from 1 to 10 GHz. The generated scattering parameters (S-parameters) are in frequency domain form. This paper describes in detail regarding the signal conversion from frequency domain to time domain through proposed Inverse Fast Fourier Transform (IFFT) method as well as the noise filtering process. Peaks detection process was performed in order to identify the time delay of the reflection points at different Y-axis
文摘A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the GPS signal distortion. It is shown that the behavior of satellite signals is associated with the spectral characteristics of the UHF radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere. The foundations of the quantum theory of distortion and delay of GPS satellite signal propagation through D and E atmospheric layers are analyzed and expounded. The problem reduces to the resonant scattering of photons, moving in the electromagnetic field of the signal, to the Rydberg complexes populated in a two-temperature non-equilibrium plasma. The processes of creation of additional photons because of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the Earth’s upper atmosphere, firstly earlier proposed by the same authors, is described in detail. The general problems of the theory and possible theoretical and applied consequences are discussed. It is explained that two main processes occurring here, are directly related to the resonant quantum properties of the propagation medium. The first process leads to a direct increase in the power of the received signal, and second—to a shift in the signal carrier frequency??and the time delay??of its propagation. The main reasons of the processes are scattering of the Rydberg electron by the ion core and presence of the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. The main purposes of our investigation are the physical justification of the formation of parameters ?and??using the quantum dynamics of the electron behavior in the intermediate state of the Rydberg complex A**M and the estimation of the quantities of??and??in the elementary act of elastic (Rayleigh) photon scattering.
基金supported by the National Key Technology Research and Development Program of China(863 Program, Grant No.2009BAG18B03)
文摘Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.