期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Intrinsic and scattering attenuations of the Sichuan-Yunnan region in China from S coda waves
1
作者 Tian Li Lei Zhang +4 位作者 Xiaodong Song Qincai Wang Xinyu Jiang Jinchuan Zhang Hanlin Chen 《Earthquake Science》 2024年第1期51-66,共16页
Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this stud... Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this study,we collected 108,399 waveforms of 11,517 local small earthquakes with magnitudes between 1.5 and 3.5 from January 2014 to September 2021 in the Sichuan-Yunnan region and its adjacent areas.We employed an envelope inversion technique for separating the intrinsic and scattering attenuations of the S coda wave,and obtained the intrinsic and scattering attenuation structures for frequencies between 0.25 and 8.00 Hz.The attenuation structures correlate well with the geological units,and some major faults mark the attenuation variations where historic large earthquakes have occurred.The regional average attenuation shows a negative frequency dependence.The average scattering attenuation has a faster descending rate than the average intrinsic attenuation,and is dominant at low frequencies,while at high frequencies the average intrinsic attenuation is stronger.The lateral variation in the intrinsic attenuation is consistent with the variation in heat flow,the scattering attenuation may be related to the scatter distribution and size.The total attenuation is consistent with the previous studies in this region,and the separate intrinsic and scattering attenuation may be useful in understanding regional tectonics and important in earthquake prevention and disaster reduction. 展开更多
关键词 Intrinsic attenuation scattering attenuation Sichuan-Yunnan region
下载PDF
Vegetation scattering attenuation characteristics of terahertz wave
2
作者 JING Qingfeng DIAO Zhuo ZHU Zhongbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1501-1507,共7页
A terahertz(THz)wave transmitted through vegetation experiences both absorption and scattering caused by the air molecules and leaves.This paper presents the scattering attenuation characteristics of vegetation in a T... A terahertz(THz)wave transmitted through vegetation experiences both absorption and scattering caused by the air molecules and leaves.This paper presents the scattering attenuation characteristics of vegetation in a THz range.The theoretical path loss model near the vegetation yields the average attenuation of THz waves in a mixed channel composed of air and vegetation leaves.Furthermore,a simplified model of the vegetation structure is obtained for generic vegetation types based on a variety of parameters,such as leaf size,distribution,and moisture content.Finally,based on specific vegetation species and different levels of air humidity,the attenuation characteristics under different conditions are calculated,and the influence of different model parameters on the attenuation characteristics is obtained. 展开更多
关键词 terahertz(THz) scatter attenuation VEGETATION vegetation structure model
下载PDF
Elastic wave propagation and scattering in prestressed porous rocks 被引量:1
3
作者 Li-Yun FU Bo-Ye FU +2 位作者 Weijia SUN Tongcheng HAN Jianlin LIU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第9期1309-1329,共21页
Poro-acoustoelastic theory has made a great progress in both theoretical and experimental aspects,but with no publications on the joint research from theoretical analyses,experimental measurements,and numerical valida... Poro-acoustoelastic theory has made a great progress in both theoretical and experimental aspects,but with no publications on the joint research from theoretical analyses,experimental measurements,and numerical validations.Several key issues challenge the joint research with comparisons of experimental and numerical results,such as digital imaging of heterogeneous poroelastic properties,estimation of acoustoelastic constants,numerical dispersion at high frequencies and strong heterogeneities,elastic nonlinearity due to compliant pores,and contamination by boundary reflections.Conventional poroacoustoelastic theory,valid for the linear elastic deformation of rock grains and stiff pores,is modified by incorporating a dualporosity model to account for elastic nonlinearity due to compliant pores subject to high-magnitude loading stresses.A modified finite-element method is employed to simulate the subtle effect of microstructures on wave propagation in prestressed digital cores.We measure the heterogeneity of samples by extracting the autocorrelation length of digital cores for a rough estimation of scattering intensity.We conductexperimental measurements with a fluid-saturated sandstone sample under a constant confining pressure of 65 MPa and increasing pore pressures from 5 to 60 MPa.Numerical simulations for ultrasound propagation in the prestressed fluid-saturated digital core of the sample are followed based on the proposed poro-acoustoelastic model with compliant pores.The results demonstrate a general agreement between experimental and numerical waveforms for different stresses,validating the performance of the presented modeling scheme.The excellent agreement between experimental and numerical coda quality factors demonstrates the applicability for the numerical investigation of the stress-associated scattering attenuation in prestressed porous rocks. 展开更多
关键词 Poro-acoustoelasticity with compliant pores Elastic waves Prestressed porous rocks Numerical modeling Stressinduced scattering attenuation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部