Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article i...Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.展开更多
During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode ...During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(Grant No.51279033) and Natural Science Foundation of Heilongjiang Province, China(Grant No.F201346 )
文摘Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.
基金The authors thank the financial support of Natural Science Foundation of China(U2031112)Natural Science Foundation of Hunan Province(2021JJ30469)Natural Science Youth Foundation of Hunan Province(2020JJ5396).
文摘During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.