In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogde...In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine's experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine's scattering relation which consists of perturbation theory and Chapman-Harris's scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.展开更多
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator(SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel(HKF) method....The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator(SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel(HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS(MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests(CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.展开更多
Two new criterions of adiabaticity and two estimation formulas for backward scattering strength are derived in this paper. Numerical simulation shows that the estimations given here are better than the usual one.
文摘In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine's experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine's scattering relation which consists of perturbation theory and Chapman-Harris's scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.
文摘The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator(SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel(HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS(MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests(CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
基金The author would like to thank the Precision & Intelligent Laboratory of Tokyo Institute of Technology for their financial support. Part of the work was completed when the author visited there. The author also thanks Prof .E.G. Shang for bringing our in
文摘Two new criterions of adiabaticity and two estimation formulas for backward scattering strength are derived in this paper. Numerical simulation shows that the estimations given here are better than the usual one.