Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence...Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.展开更多
China's energy supply-and-demand model and two related carbon emission scenarios, including a planned peak scenario and an advanced peak scenario, are designed taking into consideration China's economic development,...China's energy supply-and-demand model and two related carbon emission scenarios, including a planned peak scenario and an advanced peak scenario, are designed taking into consideration China's economic development, technological progress, policies, resources, environmental capacity, and other factors. The analysis of the defined scenarios provides the following conclusions: Primary energy and power demand will continue to grow leading up to 2030, and the growth rate of power demand will be much higher than that of primary energy demand. Moreover, low carbonization will be a basic feature of energy supply-and-demand structural changes, and non-fossil energy will replace oil as the second largest energy source. Finally, energy- related carbon emissions could peak in 2025 through the application of more efficient energy consumption patterns and more low-carbon energy supply modes. The push toward decarbonization of the power industry is essential for reducing the peak value of carbon emissions.展开更多
Climate change has significantly affected hydrological processes and increased the frequency and severity of water shortage,droughts and floods in northeast China.A study has been conducted to quantify the influence o...Climate change has significantly affected hydrological processes and increased the frequency and severity of water shortage,droughts and floods in northeast China.A study has been conducted to quantify the influence of climate change on the hydrologic process in the Tao’er River Basin(TRB),one of the most prominent regions in northeast China for water contradiction.The Soil and Water Assessment Tool(SWAT)model was calibrated and validated with observed land use and hydro-climatic data and then employed for runoff simulations at upper,middle and lower reaches of the river basin for different climate change scenarios.The results showed that a gradual increase in temperature and decrease in annual precipitation in the basin was projected for the period 2020-2050 for both representative concentration pathways(RCP)4.5 and 8.5 scenarios.The climate changes would cause a decrease in annual average runoff at basin outlet by 12 and 23 million m^(3) for RCP4.5 and 8.5,respectively.The future runoff in the upstream and midstream of the basin during 2020-2050 would be-10.8% and-12.1% lower than the observed runoff compared to the base period for RCP4.5,while those would be-5.3% and-10.7%lower for RCP8.5.The future runoff will decrease at three hydrology stations for the assumed future climate scenarios.The results can help us understand the future temperature and precipitation trends and the hydrological cycle process under different climate change scenarios,and provide the basis for the rational allocation and management of water resources under the influence of future climate change in the TRB.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
How to simulate land-cover change,driven by climate change and human activity,is not only a hot issue in the field of land-cover research but also in the field of sustainable urbanization.A surface-modeling method of ...How to simulate land-cover change,driven by climate change and human activity,is not only a hot issue in the field of land-cover research but also in the field of sustainable urbanization.A surface-modeling method of land cover scenario(SSMLC)driven by the coupling of natural and human factors was developed to overcome limitations in existing land-cover models.Based on the climatic scenario data of CMIP6 SSP1-2.6,SSP2-4.5,and SSP5-8.5 released by IPCC in 2020,which combines shared socioeconomic paths(SSPs)with typical concentration paths(RCPs),observation climatic data concerning meteorological stations,the population,GDP,transportation data,land-cover data from 2020,and related policy refences,are used to simulate scenarios of land-cover change in the Jing-Jin-Ji region using SSP1-2.6,SSP2-4.5,and SSP5-8.5 for the years 2040,2070 and 2100,respectively.The simulation results show that the total accuracy of SSMLC in the Jing-Jin-Ji region attains 93.52%.The change intensity of land cover in the Jing-Jin-Ji region is the highest(plus 3.12%per decade)between 2020 and 2040,gradually decreasing after 2040.Built-up land has the fastest increasing rate(plus 5.07%per decade),and wetland has the fastest decreasing rate(minus 3.10%per decade)between 2020 and 2100.The change intensity of land cover under scenario SSP5-8.5 is the highest among the abovementioned three scenarios in the Jing-Jin-Ji region between 2020 and 2100.The impacts of GDP,population,transportation,and policies on land-cover change are generally greater than those on other land-cover types.The results indicate that the SSMLC method can be used to project the change trend and intensity of land cover under the different scenarios.This will help to optimize the spatial allocation and planning of land cover,and could be used to obtain key data for carrying out eco-environmental conservation measures in the Jing-Jin-Ji region in the future.展开更多
Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This p...Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This paper selects rainstorm waterlogging as a disaster to research, which is one of the most frequently occurring hazards for most cities in China. As an example, we used a small-scale integrated methodology to assess risks relating to rainstorm waterlogging hazards in the Jing'an District of Shanghai. Based on the basic concept of disaster risk, this paper applies scenario modelling to express the risk of small-scale urban rainstorm waterlogging disasters in different return periods. Through this analysis of vulnerability and exposure, we simulate different disaster scenarios and propose a comprehensive analysis method and procedure for small-scale urban storm waterlogging disaster risk assessments. A grid-based Geographical Information System (GIS) approach, including an urban terrain model, an urban rainfall model and an urban drainage model, was applied to simulate inundation area and depth. Stage-damage curves for residential buildings and contents were then generated by the loss data of waterlogging from field surveys, which were further applied to analyse vulnerability, exposure and loss assessment. Finally, the exceedance probability curve for disaster damage was constructed using the damage of each simulated event and the respective exceedance probabilities. A framework was also developed for coupling the waterlogging risk with the risk planning and management through the exceedance probability curve and annual average waterlogging loss. This is a new exploration for small-scale urban natural disaster scenario simulation and risk assessment.展开更多
The application of helicopter emergency rescue is becoming increasingly widespread,but the flight crew training in this area is still difficult due to high cost and risk.Nevertheless,with the development of Virtual Re...The application of helicopter emergency rescue is becoming increasingly widespread,but the flight crew training in this area is still difficult due to high cost and risk.Nevertheless,with the development of Virtual Reality(VR)technology,virtual simulation has become a significant role in crew training of helicopter rescue.During the implementation of VR-based training,how to transform complex real tasks into VR scenarios and how to evaluate the performance of crew are of great importance.To address these issues,a novel VR-based R-E-A-D(Report,Evaluate,Agree,Do)evaluation model for training is proposed,which is suitable for complex missions with multiple tasks,multiple scenarios,and multiple people.Then,a mapping method of VR scenarios is put forward,which can transform the real tasks into virtual scenarios to serve the virtual simulation training.Finally,an experiment is carried out to verify the feasibility of the evaluation method and virtual scenario mapping method.展开更多
This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, use...This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling(RSM) methodology and serves as a visualization and analysis tool(VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S.demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias 〈 2% and assisting in air quality policy making in near real time.展开更多
To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundament...To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment.展开更多
文摘Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.
文摘China's energy supply-and-demand model and two related carbon emission scenarios, including a planned peak scenario and an advanced peak scenario, are designed taking into consideration China's economic development, technological progress, policies, resources, environmental capacity, and other factors. The analysis of the defined scenarios provides the following conclusions: Primary energy and power demand will continue to grow leading up to 2030, and the growth rate of power demand will be much higher than that of primary energy demand. Moreover, low carbonization will be a basic feature of energy supply-and-demand structural changes, and non-fossil energy will replace oil as the second largest energy source. Finally, energy- related carbon emissions could peak in 2025 through the application of more efficient energy consumption patterns and more low-carbon energy supply modes. The push toward decarbonization of the power industry is essential for reducing the peak value of carbon emissions.
基金the Key R&D Projects of Jilin Provincial Science and Technology Department(20200403070SF)Young Top-Notch Talent Support Program of National High-level Talents Special Support Plan+2 种基金National Key R&D Program of China(NO.2017YFC0403506)China Water Resource Conservation and Protection Project(No.126302001000150005)Strategic Consulting Projects of Chinese Academy of Engineering(NO.2016-ZD-08-05-02)。
文摘Climate change has significantly affected hydrological processes and increased the frequency and severity of water shortage,droughts and floods in northeast China.A study has been conducted to quantify the influence of climate change on the hydrologic process in the Tao’er River Basin(TRB),one of the most prominent regions in northeast China for water contradiction.The Soil and Water Assessment Tool(SWAT)model was calibrated and validated with observed land use and hydro-climatic data and then employed for runoff simulations at upper,middle and lower reaches of the river basin for different climate change scenarios.The results showed that a gradual increase in temperature and decrease in annual precipitation in the basin was projected for the period 2020-2050 for both representative concentration pathways(RCP)4.5 and 8.5 scenarios.The climate changes would cause a decrease in annual average runoff at basin outlet by 12 and 23 million m^(3) for RCP4.5 and 8.5,respectively.The future runoff in the upstream and midstream of the basin during 2020-2050 would be-10.8% and-12.1% lower than the observed runoff compared to the base period for RCP4.5,while those would be-5.3% and-10.7%lower for RCP8.5.The future runoff will decrease at three hydrology stations for the assumed future climate scenarios.The results can help us understand the future temperature and precipitation trends and the hydrological cycle process under different climate change scenarios,and provide the basis for the rational allocation and management of water resources under the influence of future climate change in the TRB.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金National Key R&D Program of China(2017YFA0603702)National Key R&D Program of China(2018YFC0507202)+3 种基金National Natural Science Foundation of China(41971358)National Natural Science Foundation of China(41930647)Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA20030203)Innovation Research Project of State Key Laboratory of Resources and Environment Information System,CAS。
文摘How to simulate land-cover change,driven by climate change and human activity,is not only a hot issue in the field of land-cover research but also in the field of sustainable urbanization.A surface-modeling method of land cover scenario(SSMLC)driven by the coupling of natural and human factors was developed to overcome limitations in existing land-cover models.Based on the climatic scenario data of CMIP6 SSP1-2.6,SSP2-4.5,and SSP5-8.5 released by IPCC in 2020,which combines shared socioeconomic paths(SSPs)with typical concentration paths(RCPs),observation climatic data concerning meteorological stations,the population,GDP,transportation data,land-cover data from 2020,and related policy refences,are used to simulate scenarios of land-cover change in the Jing-Jin-Ji region using SSP1-2.6,SSP2-4.5,and SSP5-8.5 for the years 2040,2070 and 2100,respectively.The simulation results show that the total accuracy of SSMLC in the Jing-Jin-Ji region attains 93.52%.The change intensity of land cover in the Jing-Jin-Ji region is the highest(plus 3.12%per decade)between 2020 and 2040,gradually decreasing after 2040.Built-up land has the fastest increasing rate(plus 5.07%per decade),and wetland has the fastest decreasing rate(minus 3.10%per decade)between 2020 and 2100.The change intensity of land cover under scenario SSP5-8.5 is the highest among the abovementioned three scenarios in the Jing-Jin-Ji region between 2020 and 2100.The impacts of GDP,population,transportation,and policies on land-cover change are generally greater than those on other land-cover types.The results indicate that the SSMLC method can be used to project the change trend and intensity of land cover under the different scenarios.This will help to optimize the spatial allocation and planning of land cover,and could be used to obtain key data for carrying out eco-environmental conservation measures in the Jing-Jin-Ji region in the future.
基金National Nature Science Foundation of China, No.41071324 No.40730526+2 种基金 Key Subject Developing Project by Shanghai Municipal Education Commission, No.J50402 Science and Technology Commission of Shanghai Municipality, No.08240514000 Leading Academic Discipline Project of Shanghai Normal University, No.DZL809
文摘Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This paper selects rainstorm waterlogging as a disaster to research, which is one of the most frequently occurring hazards for most cities in China. As an example, we used a small-scale integrated methodology to assess risks relating to rainstorm waterlogging hazards in the Jing'an District of Shanghai. Based on the basic concept of disaster risk, this paper applies scenario modelling to express the risk of small-scale urban rainstorm waterlogging disasters in different return periods. Through this analysis of vulnerability and exposure, we simulate different disaster scenarios and propose a comprehensive analysis method and procedure for small-scale urban storm waterlogging disaster risk assessments. A grid-based Geographical Information System (GIS) approach, including an urban terrain model, an urban rainfall model and an urban drainage model, was applied to simulate inundation area and depth. Stage-damage curves for residential buildings and contents were then generated by the loss data of waterlogging from field surveys, which were further applied to analyse vulnerability, exposure and loss assessment. Finally, the exceedance probability curve for disaster damage was constructed using the damage of each simulated event and the respective exceedance probabilities. A framework was also developed for coupling the waterlogging risk with the risk planning and management through the exceedance probability curve and annual average waterlogging loss. This is a new exploration for small-scale urban natural disaster scenario simulation and risk assessment.
文摘The application of helicopter emergency rescue is becoming increasingly widespread,but the flight crew training in this area is still difficult due to high cost and risk.Nevertheless,with the development of Virtual Reality(VR)technology,virtual simulation has become a significant role in crew training of helicopter rescue.During the implementation of VR-based training,how to transform complex real tasks into VR scenarios and how to evaluate the performance of crew are of great importance.To address these issues,a novel VR-based R-E-A-D(Report,Evaluate,Agree,Do)evaluation model for training is proposed,which is suitable for complex missions with multiple tasks,multiple scenarios,and multiple people.Then,a mapping method of VR scenarios is put forward,which can transform the real tasks into virtual scenarios to serve the virtual simulation training.Finally,an experiment is carried out to verify the feasibility of the evaluation method and virtual scenario mapping method.
基金Financial and data support for this work is provided by the U.S. Environmental Protection Agency (No. GS-10F-0205T)partly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (No. h2xj D612004 Ш )+1 种基金the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201308)the project of Atmospheric Haze Collaboration Control Technology Design (No. XDB05030400) from Chinese Academy of Sciences
文摘This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling(RSM) methodology and serves as a visualization and analysis tool(VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S.demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias 〈 2% and assisting in air quality policy making in near real time.
基金National Natural Science Foundation of China No.U19A2083.
文摘To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment.