期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ST-SIGMA:Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting 被引量:4
1
作者 Yang Fang Bei Luo +3 位作者 Ting Zhao Dong He Bingbing Jiang Qilie Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期744-757,共14页
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges... Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios. 展开更多
关键词 feature fusion graph interaction hierarchical aggregation scene perception scene semantics trajectory forecasting
下载PDF
Domain adaptive semantic segmentation by optimal transport
2
作者 Yaqian Guo Xin Wang +1 位作者 Ce Li Shihui Ying 《Fundamental Research》 CAS CSCD 2024年第5期981-991,共11页
Scene segmentation is widely used in autonomous driving for environmental perception.Semantic scene segmentation has gained considerable attention owing to its rich semantic information.It assigns labels to the pixels... Scene segmentation is widely used in autonomous driving for environmental perception.Semantic scene segmentation has gained considerable attention owing to its rich semantic information.It assigns labels to the pixels in an image,thereby enabling automatic image labeling.Current approaches are based mainly on convolutional neural networks(CNN),however,they rely on numerous labels.Therefore,the use of a small amount of labeled data to achieve semantic segmentation has become increasingly important.In this study,we developed a domain adaptation framework based on optimal transport(OT)and an attention mechanism to address this issue.Specifically,we first generated the output space via a CNN owing to its superior of feature representation.Second,we utilized OT to achieve a more robust alignment of the source and target domains in the output space,where the OT plan defined a well attention mechanism to improve the adaptation of the model.In particular,the OT reduced the number of network parameters and made the network more interpretable.Third,to better describe the multiscale properties of the features,we constructed a multiscale segmentation network to perform domain adaptation.Finally,to verify the performance of the proposed method,we conducted an experiment to compare the proposed method with three benchmark and four SOTA methods using three scene datasets.The mean intersection-over-union(mIOU)was significantly improved,and visualization results under multiple domain adaptation scenarios also show that the proposed method performed better than semantic segmentation methods. 展开更多
关键词 Semantic scene segmentation Unsupervised domain adaptation Optimal transport Deep learning Multiscale network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部