Design of scheduling decision mechanism is a key issue of scheduling decision method and strategy for agile manufacturing system. Effective scheduling decision mechanism helps to improve the operational agility of man...Design of scheduling decision mechanism is a key issue of scheduling decision method and strategy for agile manufacturing system. Effective scheduling decision mechanism helps to improve the operational agility of manufacturing system. Several scheduling decision mechanisms are discussed, including scheduling forecasting mechanism, cooperation mechanism and cell scheduling mechanism. Also soft decision mechanism is put forward as a promising prospect for agile manufacturing system, and some key techniques in soft decision mechanism are introduced.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r ...Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".展开更多
To analyze and optimize the weapon system of systems(WSOS)scheduling process,a new method based on robust capabilities for WSOS scheduling optimization is proposed.First,we present an activity network to represent the...To analyze and optimize the weapon system of systems(WSOS)scheduling process,a new method based on robust capabilities for WSOS scheduling optimization is proposed.First,we present an activity network to represent the military mission.The member systems need to be reasonably assigned to perform different activities in the mission.Then we express the problem as a set partitioning formulation with novel columns(activity flows).A heuristic branch-and-price algorithm is designed based on the model of the WSOS scheduling problem(WSOSSP).The algorithm uses the shortest resource-constrained path planning to generate robust activity flows that meet the capability requirements.Finally,we discuss this method in several test cases.The results show that the solution can reduce the makespan of the mission remarkably.展开更多
基金Supported by China Hi-tech Program(China 863) (2003AA411120)Humanities and Social Sciences Program of East China University of Science & Technology
文摘Design of scheduling decision mechanism is a key issue of scheduling decision method and strategy for agile manufacturing system. Effective scheduling decision mechanism helps to improve the operational agility of manufacturing system. Several scheduling decision mechanisms are discussed, including scheduling forecasting mechanism, cooperation mechanism and cell scheduling mechanism. Also soft decision mechanism is put forward as a promising prospect for agile manufacturing system, and some key techniques in soft decision mechanism are introduced.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
文摘Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".
基金supported by the National Key R&D Program of China(2018YFC0806900)the China Postdoctoral Science Foundation Funded Project(2018M633757)+1 种基金the Primary Research&Development Plan of Jiangsu Province(BE2017616,BE20187540,BE2019762,BE2020729)the Jiangsu Province Postdoctoral Science Foundation Funded Project(2019K185).
文摘To analyze and optimize the weapon system of systems(WSOS)scheduling process,a new method based on robust capabilities for WSOS scheduling optimization is proposed.First,we present an activity network to represent the military mission.The member systems need to be reasonably assigned to perform different activities in the mission.Then we express the problem as a set partitioning formulation with novel columns(activity flows).A heuristic branch-and-price algorithm is designed based on the model of the WSOS scheduling problem(WSOSSP).The algorithm uses the shortest resource-constrained path planning to generate robust activity flows that meet the capability requirements.Finally,we discuss this method in several test cases.The results show that the solution can reduce the makespan of the mission remarkably.