Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of...Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of passengers from the dominant mode to the connecting mode was achieved. A GI/M K/1 bulk service queuing system was constituted by putting the passengers' reaching time distribution as the input and the connecting mode as the service institution. Through queuing theory, the relationship between average queuing length under steady-state and headway of the connecting mode was achieved. By putting the minimum total cost of system as optimization objective, the headway as decision variable, a coordinated scheduling model of multimode in intermodal transit hubs was established. At last, a dynamic scheduling strategy was generated to cope with the unexpected changes of the dominant mode. The instance analysis indicates that this model can significantly reduce passengers' queuing time by approximately 17% with no apparently increase in departure frequency, which provides a useful solution for the coordinated scheduling of different transport modes in hubs.展开更多
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo...To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.展开更多
Services provided by internet need guaranteed network performance. Efficient packet queuing and scheduling schemes play key role in achieving this. Internet engineering task force(IETF) has proposed Differentiated Ser...Services provided by internet need guaranteed network performance. Efficient packet queuing and scheduling schemes play key role in achieving this. Internet engineering task force(IETF) has proposed Differentiated Services(Diff Serv) architecture for IP network which is based on classifying packets in to different service classes and scheduling them. Scheduling schemes of today's wireless broadband networks work on service differentiation. In this paper, we present a novel packet queue scheduling algorithm called dynamically weighted low complexity fair queuing(DWLC-FQ) which is an improvement over weighted fair queuing(WFQ) and worstcase fair weighted fair queuing+(WF2Q+). The proposed algorithm incorporates dynamic weight adjustment mechanism to cope with dynamics of data traffic such as burst and overload. It also reduces complexity associated with virtual time update and hence makes it suitable for high speed networks. Simulation results of proposed packet scheduling scheme demonstrate improvement in delay and drop rate performance for constant bit rate and video applications with very little or negligible impact on fairness.展开更多
A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and i...A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and input queuing, and a scheduling method based on neural network is proposed. For the proposed method, a scheduling system structure fit for the variable-length packet case is presented first, then some rules for scheduling are given. At last, an optimal scheduling method using Hopfield neural network is proposed based on the rules. Furthermore, the paper discusses that the proposed method can be realized by hardware circuit. The simulation result shows the effectiveness of the proposed method.展开更多
This paper proposes a distributed fair queuing algorithm which is based on compensation coordi- nation scheduling in wireless mesh networks, considering such problems as the location-dependent competition and unfair c...This paper proposes a distributed fair queuing algorithm which is based on compensation coordi- nation scheduling in wireless mesh networks, considering such problems as the location-dependent competition and unfair channel bandwidth allocation among nodes. The data communication process requiring the establishment of compensation coordination scheduling model is divided into three periods: the sending period, the compensation period and the dormancy period. According to model parameters, time constraint functions are designed to limit the execution length of each period. The algorithms guarantee that the nodes complete fair transmission of network packets together in accordance with the fixed coordination scheduling rule of the model. Simulations and analysis demonstrate the effectiveness of the proposed algorithm in network throughput and fairness.展开更多
Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, p...Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricityneeds, preventive maintenance is the most widely used method for maintenance scheduling. The downside tousing this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In thispaper, a more detailed maintenance plan for a 2 MW WT has been developed. The paper’s focus is to minimize aWT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal numberof PM required for the system. In the second layer, the optimal times for preventative maintenance and optimalcomponents to maintain have been determined to minimize maintenance costs. The Monte Carlo simulationestimates WT component failure times using their lifetime distributions from the reliability model. The estimatedfailure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,an optimal PM schedule is proposed for a 2 MW WT using the presented method. The method used in this papercan be expanded to a wind farm or similar engineering systems.展开更多
可再生能源和负荷的波动性、不确定性等给综合能源系统(integrated energy system,IES)的安全灵活运行带来了极大挑战。为提高IES灵活调节能力与可再生能源消纳水平,提出一种计及灵活性资源的IES源荷协调优化调度方法。针对系统内运行...可再生能源和负荷的波动性、不确定性等给综合能源系统(integrated energy system,IES)的安全灵活运行带来了极大挑战。为提高IES灵活调节能力与可再生能源消纳水平,提出一种计及灵活性资源的IES源荷协调优化调度方法。针对系统内运行灵活性需求,精细刻画各类资源灵活性能力,源侧根据电氢耦合单元运行特性构建热电联产机组(combined heating and power,CHP)和氢燃料电池(hydrogen fuel cell,HFC)联合运行模型,荷侧考虑综合需求响应的灵活性供给能力,建立系统综合灵活性供给模型。根据不同时刻运行灵活性不足问题分成2种调度模式,构建基于IES灵活性约束的优化调度模型,并进行仿真分析。仿真结果表明,所提出的优化调度方法能够有效提高IES灵活调节能力和可再生能源消纳水平。展开更多
To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport req...To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport requests in this paper. Firstly, a workshop scheduling mechanism of AGV is analyzed and a mathematical model is established using Genetic Algorithm. According to several sets of transport priority of AGV, processes of FMS are encoded, and fitness function, selection, crossover, and variation methods are designed. The transport priority which has the least impact on scheduling results is determined based on the simulation analysis of Genetic Algorithm, and the makespan, the longest waiting time, and optimal route of the car are calculated. According to the actual processing situation of the workshop, feasibility of this method is verified successfully to provide an effective solution to the scheduling problem of single AGV.展开更多
基金Projects(51278221,51378076)supported by the National Natural Science Foundation of China
文摘Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of passengers from the dominant mode to the connecting mode was achieved. A GI/M K/1 bulk service queuing system was constituted by putting the passengers' reaching time distribution as the input and the connecting mode as the service institution. Through queuing theory, the relationship between average queuing length under steady-state and headway of the connecting mode was achieved. By putting the minimum total cost of system as optimization objective, the headway as decision variable, a coordinated scheduling model of multimode in intermodal transit hubs was established. At last, a dynamic scheduling strategy was generated to cope with the unexpected changes of the dominant mode. The instance analysis indicates that this model can significantly reduce passengers' queuing time by approximately 17% with no apparently increase in departure frequency, which provides a useful solution for the coordinated scheduling of different transport modes in hubs.
基金Shaanxi Provincial Key Research and Development Project(2023YBGY095)and Shaanxi Provincial Qin Chuangyuan"Scientist+Engineer"project(2023KXJ247)Fund support.
文摘To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.
文摘Services provided by internet need guaranteed network performance. Efficient packet queuing and scheduling schemes play key role in achieving this. Internet engineering task force(IETF) has proposed Differentiated Services(Diff Serv) architecture for IP network which is based on classifying packets in to different service classes and scheduling them. Scheduling schemes of today's wireless broadband networks work on service differentiation. In this paper, we present a novel packet queue scheduling algorithm called dynamically weighted low complexity fair queuing(DWLC-FQ) which is an improvement over weighted fair queuing(WFQ) and worstcase fair weighted fair queuing+(WF2Q+). The proposed algorithm incorporates dynamic weight adjustment mechanism to cope with dynamics of data traffic such as burst and overload. It also reduces complexity associated with virtual time update and hence makes it suitable for high speed networks. Simulation results of proposed packet scheduling scheme demonstrate improvement in delay and drop rate performance for constant bit rate and video applications with very little or negligible impact on fairness.
文摘A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and input queuing, and a scheduling method based on neural network is proposed. For the proposed method, a scheduling system structure fit for the variable-length packet case is presented first, then some rules for scheduling are given. At last, an optimal scheduling method using Hopfield neural network is proposed based on the rules. Furthermore, the paper discusses that the proposed method can be realized by hardware circuit. The simulation result shows the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (61071096, 61003233, 61073103 ) and the Research Fund for the Doctoral Program of Higher Education (20100162110012).
文摘This paper proposes a distributed fair queuing algorithm which is based on compensation coordi- nation scheduling in wireless mesh networks, considering such problems as the location-dependent competition and unfair channel bandwidth allocation among nodes. The data communication process requiring the establishment of compensation coordination scheduling model is divided into three periods: the sending period, the compensation period and the dormancy period. According to model parameters, time constraint functions are designed to limit the execution length of each period. The algorithms guarantee that the nodes complete fair transmission of network packets together in accordance with the fixed coordination scheduling rule of the model. Simulations and analysis demonstrate the effectiveness of the proposed algorithm in network throughput and fairness.
基金the Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2019-05361)and the University Research Grants Program.
文摘Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricityneeds, preventive maintenance is the most widely used method for maintenance scheduling. The downside tousing this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In thispaper, a more detailed maintenance plan for a 2 MW WT has been developed. The paper’s focus is to minimize aWT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal numberof PM required for the system. In the second layer, the optimal times for preventative maintenance and optimalcomponents to maintain have been determined to minimize maintenance costs. The Monte Carlo simulationestimates WT component failure times using their lifetime distributions from the reliability model. The estimatedfailure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,an optimal PM schedule is proposed for a 2 MW WT using the presented method. The method used in this papercan be expanded to a wind farm or similar engineering systems.
文摘可再生能源和负荷的波动性、不确定性等给综合能源系统(integrated energy system,IES)的安全灵活运行带来了极大挑战。为提高IES灵活调节能力与可再生能源消纳水平,提出一种计及灵活性资源的IES源荷协调优化调度方法。针对系统内运行灵活性需求,精细刻画各类资源灵活性能力,源侧根据电氢耦合单元运行特性构建热电联产机组(combined heating and power,CHP)和氢燃料电池(hydrogen fuel cell,HFC)联合运行模型,荷侧考虑综合需求响应的灵活性供给能力,建立系统综合灵活性供给模型。根据不同时刻运行灵活性不足问题分成2种调度模式,构建基于IES灵活性约束的优化调度模型,并进行仿真分析。仿真结果表明,所提出的优化调度方法能够有效提高IES灵活调节能力和可再生能源消纳水平。
基金Supported by the National Natural Science Foundation of China(No.51765043)
文摘To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport requests in this paper. Firstly, a workshop scheduling mechanism of AGV is analyzed and a mathematical model is established using Genetic Algorithm. According to several sets of transport priority of AGV, processes of FMS are encoded, and fitness function, selection, crossover, and variation methods are designed. The transport priority which has the least impact on scheduling results is determined based on the simulation analysis of Genetic Algorithm, and the makespan, the longest waiting time, and optimal route of the car are calculated. According to the actual processing situation of the workshop, feasibility of this method is verified successfully to provide an effective solution to the scheduling problem of single AGV.