Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time ...The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.展开更多
An improved unslotted CSMA/CA MAC scheme of HORNET based on the node structure with variable optical buffer is reported. It can be used for transmitting high effectively all variable IP packets in the WDM network.
In a recent paper, an efficient semi-implicit finite element scheme for 2-dimensional tidal flow computations is proposed. In that scheme, each term of the governing equations, rather than each dependent variable, is ...In a recent paper, an efficient semi-implicit finite element scheme for 2-dimensional tidal flow computations is proposed. In that scheme, each term of the governing equations, rather than each dependent variable, is ex- panded in terms of the unknown nodal values. Simpson's rule ix used for numerical integration to make the mass matrix diagonal. The friction terms are represented semi-implicitly to improve stability, but no additional compu- tational effort is required. The shortcomings of this scheme are that the time-stepping scheme is only first-order ae- curate and artificial smoothing is required to control the numerical noise. In this paper, the previous scheme is im- proved by including the eddy viscosity terms in the governing equations to replace artificial smoothing in noise con- trol and the time-stepping scheme is modified to make it second-order accurate. These improvements can be achieved with only a slight increase in computational effort. The test cases used previously to validate the former scheme are again employed to test the present scheme.展开更多
This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it...This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohydrodynamics(MHD)equations.The improved CESE method can improve the solution quality even with a large disparity in the Courant number(CFL)when using a fixed global marching time.Moreover,for a small CFL(say<0.1),the method can significantly reduce the numerical dissipation and retain the solution quality,which are verified by two benchmark problems.And meanwhile,comparison with the original CESE scheme shows better resolution of the improved scheme results.Finally,we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with dipole magnetic fields and measured solar surface magnetic fields as the initial input.展开更多
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274092 and 1140040119)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK2014043338)
文摘The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.
文摘An improved unslotted CSMA/CA MAC scheme of HORNET based on the node structure with variable optical buffer is reported. It can be used for transmitting high effectively all variable IP packets in the WDM network.
文摘In a recent paper, an efficient semi-implicit finite element scheme for 2-dimensional tidal flow computations is proposed. In that scheme, each term of the governing equations, rather than each dependent variable, is ex- panded in terms of the unknown nodal values. Simpson's rule ix used for numerical integration to make the mass matrix diagonal. The friction terms are represented semi-implicitly to improve stability, but no additional compu- tational effort is required. The shortcomings of this scheme are that the time-stepping scheme is only first-order ae- curate and artificial smoothing is required to control the numerical noise. In this paper, the previous scheme is im- proved by including the eddy viscosity terms in the governing equations to replace artificial smoothing in noise con- trol and the time-stepping scheme is modified to make it second-order accurate. These improvements can be achieved with only a slight increase in computational effort. The test cases used previously to validate the former scheme are again employed to test the present scheme.
基金supported by the National Basic Research Program of China(Grant No.2012CB825601)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-01-4)+1 种基金the National Natural Science Foundation of China(Grant Nos.41031066,41231068,41074121&41074122)the Specialized Research Fund for State Key Laboratories
文摘This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohydrodynamics(MHD)equations.The improved CESE method can improve the solution quality even with a large disparity in the Courant number(CFL)when using a fixed global marching time.Moreover,for a small CFL(say<0.1),the method can significantly reduce the numerical dissipation and retain the solution quality,which are verified by two benchmark problems.And meanwhile,comparison with the original CESE scheme shows better resolution of the improved scheme results.Finally,we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with dipole magnetic fields and measured solar surface magnetic fields as the initial input.