A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. ...A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. The height-height correlations calculated using daily data of four July months (1976-1979), are used to derive the other autocorrelations and cross-correlations assuming geostropic relationship. A Gaussian function is used to model the autocorrelation function. Since the scheme is multivariate the regression coefficients (weights) are matrix.Near the equator, the geostrophic approximation relating mass and wind is decoupled in a way similar to Bergman (1979). The objective analyses were made over Indian and adjoining region for 850, 700, 500, 300 and 200 hPa levels for the period from 4 July to 8 July 1979, 12 GMT. The analyses obtained using multivariate optimum interpolation scheme depict the synoptic situations satisfactorily. The analyses were also compared with the FGGE analyses (from ECMWF) and also with the station observations by computing the root mean square (RMS) errors and the RMS errors are comparable with those obtained in other similar studies.展开更多
文摘A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. The height-height correlations calculated using daily data of four July months (1976-1979), are used to derive the other autocorrelations and cross-correlations assuming geostropic relationship. A Gaussian function is used to model the autocorrelation function. Since the scheme is multivariate the regression coefficients (weights) are matrix.Near the equator, the geostrophic approximation relating mass and wind is decoupled in a way similar to Bergman (1979). The objective analyses were made over Indian and adjoining region for 850, 700, 500, 300 and 200 hPa levels for the period from 4 July to 8 July 1979, 12 GMT. The analyses obtained using multivariate optimum interpolation scheme depict the synoptic situations satisfactorily. The analyses were also compared with the FGGE analyses (from ECMWF) and also with the station observations by computing the root mean square (RMS) errors and the RMS errors are comparable with those obtained in other similar studies.