Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological ...Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological is not clear yet. To deal with the complex relationship among geological parameters, cutter parameters, and operating parameters during tunneling processes, a cutter-head load model is established by using CSM(Colorado school of mines) prediction model. Force distribution on cutter-head under a certain geology is calculated with the new established load model, and result shows that inner cutters bear more force than outer cutters, combining with disc cutters abrasion; a general principle of disc cutters' layout design is proposed. Within the model, the relationship among rock uniaxial compressive strength(UCS), penetration and thrust on cutter-head are analyzed, and the results shows that with increasing penetration, cutter thrust increases, but the growth rate slows and higher penetration makes lower special energy(SE). Finally, a fitting mathematical model of ZT(ratio of cutter-head torque and thrust) and penetration is established, and verified by TB880 E, which can be used to direct how to set thrust and torque on cutter-head. When penetration is small, the cutter-head thrust is the main limiting factor in tunneling; when the penetration is large, cutter-head torque is the major limiting factor in tunneling. Based on the new cutter-head load model, thrust and torque characteristics of TBM further are researched and a new way for cutter-head layout design and TBM tunneling operations is proposed.展开更多
Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasona...Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasonably plan and distribute primary schools in low-income mountain cities. The construction principles and advantages of the SNCM method are proposed and the method tested in Wanyuan city of Qinba Mountain area(Southwest China) to verify its feasibility and optimization. Taking account of the mountain terrain and its influence on user behavior, we used the SNCM method to build a comprehensive model which integrates the road slope and the walking speed of pupils into the basic spatial model. The model is used to calculate a reasonable layout of the primary schools and to validate the rationale. The results show that the SNCM method can be effectively applied in low-income mountainous cities. It can not only improve the accessibility and service efficiency of primary schools using as little capital-investment as possible, but also help the city grow in an intensive and efficient way.展开更多
This thesis makes vocational school demonstration project as a starting point. It is a combination of the last ten years of literature on model school building. From the perspective of the audience, it is combing the ...This thesis makes vocational school demonstration project as a starting point. It is a combination of the last ten years of literature on model school building. From the perspective of the audience, it is combing the characteristics of the project due to the inherent requirements of the decision-making level, which is leading to its subordinate business operating space that has very limited level and then free the needs of the audience. It believes that if it relaxes contemplation perspective, consolidates construction of the curriculum, or it is a prime choice related to project management.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51275339)National Basic Research Program of China(973 Program,Grant No.2013CB035402)
文摘Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological is not clear yet. To deal with the complex relationship among geological parameters, cutter parameters, and operating parameters during tunneling processes, a cutter-head load model is established by using CSM(Colorado school of mines) prediction model. Force distribution on cutter-head under a certain geology is calculated with the new established load model, and result shows that inner cutters bear more force than outer cutters, combining with disc cutters abrasion; a general principle of disc cutters' layout design is proposed. Within the model, the relationship among rock uniaxial compressive strength(UCS), penetration and thrust on cutter-head are analyzed, and the results shows that with increasing penetration, cutter thrust increases, but the growth rate slows and higher penetration makes lower special energy(SE). Finally, a fitting mathematical model of ZT(ratio of cutter-head torque and thrust) and penetration is established, and verified by TB880 E, which can be used to direct how to set thrust and torque on cutter-head. When penetration is small, the cutter-head thrust is the main limiting factor in tunneling; when the penetration is large, cutter-head torque is the major limiting factor in tunneling. Based on the new cutter-head load model, thrust and torque characteristics of TBM further are researched and a new way for cutter-head layout design and TBM tunneling operations is proposed.
基金funded by the National Social Science Foundation of Chongqing (Grants No. 2016YBJJ031)
文摘Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasonably plan and distribute primary schools in low-income mountain cities. The construction principles and advantages of the SNCM method are proposed and the method tested in Wanyuan city of Qinba Mountain area(Southwest China) to verify its feasibility and optimization. Taking account of the mountain terrain and its influence on user behavior, we used the SNCM method to build a comprehensive model which integrates the road slope and the walking speed of pupils into the basic spatial model. The model is used to calculate a reasonable layout of the primary schools and to validate the rationale. The results show that the SNCM method can be effectively applied in low-income mountainous cities. It can not only improve the accessibility and service efficiency of primary schools using as little capital-investment as possible, but also help the city grow in an intensive and efficient way.
文摘This thesis makes vocational school demonstration project as a starting point. It is a combination of the last ten years of literature on model school building. From the perspective of the audience, it is combing the characteristics of the project due to the inherent requirements of the decision-making level, which is leading to its subordinate business operating space that has very limited level and then free the needs of the audience. It believes that if it relaxes contemplation perspective, consolidates construction of the curriculum, or it is a prime choice related to project management.